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Preface

The next tutorial shows how to use the hydroPSO R package to calibrate
different model codes. Two of the main properties of hydroPSO are the inde-
pendence from the model to be calibrated and the simple interfacing between
the model code and the calibration-engine, i.e. hydroPSO. These two prop-
erties are illustrated through the calibration of real-world case studies, which
should be the starting point for a user planning to implement hydroPSO for
her/his own model calibration exercise.

First, we illustrate the main features of hydroPSO when used to cali-
brate any objective function fully defined within the R environment. Sec-
ond, we show how to use hydroPSO to calibrate a semi-distributed hydro-
logical model and a steady-state groundwater flow model. The first is im-
plemented in SWAT-2005 (Neitsch et al., 2005) whereas the second is im-
plemented in MODFLOW-2005 (MF2005) (Harbaugh, 2005). Both model
codes are widely-used programs to simulate surface water and groundwater
flow problems. At the same time, for illustrative purposes we use the pro-
gram ZONEBUDGET (ZB) (Harbaugh, 1990) to obtain groundwater flows
at particular aquifer cross sections. The purpose of including ZB is to illus-
trate how to interface hydroPSO with a modelling application that involves
more than one executable code. In the latter case, however, only MF2005
is calibrated against observed data, and including other observations can be
easily implemented in a similar way as described here.

Both programs SWAT-2005 and MF2005/ZB are public domain and ac-
cessible from http://swatmodel.tamu.edu/software/swat-model/ and http:

//water.usgs.gov/nrp/gwsoftware/modflow.html, respectively. For sim-
plicity, we must assume some basic knowledge from part of the reader about
the file naming convention used in SWAT-2005, MF2005/ZB, as well as the
setting up of the internal options for these programs.

As an integral part of this tutorial, the reader can download from http:

//www.rforge.net/hydroPSO/ two files MF2005.zip and SWAT2005.zip in-
cluding all the required files to run the SWAT-2005 and MF2005 applications,
sample R scripts to interface hydroPSO with SWAT-2005 and MF2005, as
well as several auxiliary files.

For assistance, bugs report, comments, and suggestions please contact
the authors of the hydroPSO package at: mzb.devel@gmail.com and/or Ro-
drigo.RojasMujica@gmail.com.
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1 Introduction

hydroPSO is an R package implementing the Particle Swarm Optimisation
(PSO) algorithm (Kennedy and Eberhart , 1995; Eberhart and Kennedy , 1995).
PSO is a population-based global optimisation technique inspired by social
behaviour of bird flocking, which shares few similarities with other evolution-
ary optimisation techniques such as Genetic Algorithms (GA) (Poli et al.,
2007). In PSO, however, the solution-space is explored on the basis of indi-
vidual and neighbourhood best-known“particle positions”with no presence of
evolution operators (e.g. mutation or crossover) as in GA. PSO has recently
received a surge of attention in literature given its flexibility, simplicity of im-
plementation (programming), low memory and computational requirements,
low number of adjustable parameters, and efficiency (see, e.g., Eberhart and
Shi , 1998; Shi and Eberhart , 1999; Eberhart and Shi , 2001; Poli et al., 2007).

The main motivations for developing the hydroPSO package are:

1. bring this powerful optimisation/calibration technique to the attention
of practitioners and scientists working on environmental modelling,

2. provide a model-independent software package allowing the user to cal-
ibrate (different) environmental models without having to invest con-
siderable programming efforts in customizing the calibration engine to
the environmental model, and

3. allow the PSO research community to explore alternative configurations
and recent developments of the standard PSO using a versatile single-
package software.

Unlike other R packages recently developed for similar purposes (see e.g.
hydromad Andrews et al. 2011 and R-SWAT-FME Wu and Liu 2012), hy-
droPSO is not restricted to a limited number of hard-coded models, can be
interfaced with any model with a relatively low programming effort, is fully
compatible with calibration tools employing PEST-like template files (see
Doherty , 2010), and is easily parallelizable.

hydroPSO is also capable of performing sensitivity analysis using the
Latin Hypercube One-factor-At-a-Time (LH-OAT) method (see van Griensven
et al., 2006) and provides detailed information about the evolution of PSO’s
performance. In addition, advanced plotting capabilities and a complete fam-
ily of built-in functions contained in the R language (R Development Core
Team, 2011) are available to visualise, analyse and summarise the calibration
results. At the same time, hydroPSO features a suite of controlling options
and PSO variants for fine-tuning and improving the performance of PSO,
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Basic wrapper I/O

Basic wrapper I/O

Figure 1: Flow chart of the implementation/interaction between hydroPSO
and the model code to be calibrated. Dashed-line boxes represent basic
I/O functions to read/write model files (after Zambrano-Bigiarini and Rojas ,
2012).

thus, allowing the user to adapt the calibration/optimisation engine to dif-
ferent modelling problems. For a full description of the PSO enhancements
included in the hydroPSO package the reader is referred to Section 2.

In principle, hydroPSO only needs to know which model parameters need
to be calibrated, where they need to be written, and from where and how to
read the main model output. Then, it will take control of the model(s) to be
calibrated until either a maximum number of iterations or an error tolerance
in the objective function are reached: these two being problem-specific and
user-defined. The basic interaction between hydroPSO and the model to
be calibrated is shown in Figure 1. For models with numerous input and
output files or cascading models (i.e. serial modelling applications), several
I/O functions can be combined to interface hydroPSO and the model.

In this tutorial we show first how to interface hydroPSO with SWAT-2005
(Neitsch et al., 2005) to calibrate a semi-distributed hydrological model for
the Ega River basin in Spain. That section illustrates three main points: 1)
basic interfacing between hydroPSO and the model through the definition
of ASCII files ParamRanges.txt and ParamFiles.txt, used to define which
model parameters need to be calibrated and where they need to be written;
2) advanced sensitivity analysis using LH-OAT and the use of hydroPSO
with a pre-defined goodness-of-fit measure as objective function, and 3) the
set up for calibrating a model output variable in time and static in space
(transient application). Second, we show how to interface hydroPSO with
MF2005 (Harbaugh, 2005) to calibrate a groundwater flow model for the
regional aquifer of the Pampa del Tamarugal basin in Chile. That section, in
turn, illustrates: 1) advanced interfacing between hydroPSO and the model
through the implementation of user-defined I/O wrapper functions written

10



Table 1: Distinctive features of the SWAT-2005 and MF2005 applications
presented in this tutorial.

Application feature SWAT-2005 MODFLOW-2005

OS GNU/Linux Windows 7
Type of model Semi-distributed, surface hydrology Fully-distributed, groundwater
hydroPSO-model interface Basic through ASCII files Advanced through user-defined R functions
Executable model code Single file (swat2005.out) Sequential batch file (*.bat)
Simulated model outputs Transient (1962-1970), single observation Steady-state (1960), multiple observations
Goodness-of-fit measure Pre-defined Nash-Sutcliffe efficiency User-defined Gaussian likelihood

in R, 2) how to define/use a customised goodness-of-fit measure as objective
function, and 3) how to set up hydroPSO for a model output fixed in time but
variable in space (steady-state application). Details about both applications
are summarised in Table 1.

We therefore believe that this tutorial cover two standard-problems com-
monly found by the modelling community. We must note, however, that
these tutorials deal with surface water and groundwater modelling applica-
tions as these two are the authors’ areas of expertise. However, based on the
flexibility of the hydroPSO package and the benefits added by programming
it in R, we believe this package can be implemented to a wider range of envi-
ronmental models requiring some form of parameter estimation. To the date
of writing this tutorial, we have provided support to users calibrating models
such as: SWAT-2005, MF2005, LISFLOOD, AGNPS and HBV-96.

In Section 2 we present a brief description of PSO, including the main
algorithm, discussion on topologies, PSO variants and fine-tuning options
available in hydroPSO. Section 3 briefly describes the main package functions
as well as the basic requirements to interface hydroPSO with a given model
code. An introductory application of hydroPSO to optimise test functions
commonly used to assess the performance of optimisation algorithms is de-
scribed in Section 4. The procedure to interface hydroPSO with SWAT-2005
and MF2005 as well as the corresponding calibration results, are reported in
Sections 5 and 6, respectively.
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2 Particle Swarm Optimisation (PSO)

2.1 Canonical PSO Algorithm

Particle Swarm Optimisation (PSO) is a population-based global search algo-
rithm developed by Kennedy and Eberhart (1995) and Eberhart and Kennedy
(1995). A feature distinguishing PSO from evolutionary algorithms is the
lack of genetic operators, instead each individual of the population, termed
particles in PSO terminology, adjusts its flying trajectory around the multi-
dimensional search-space according to its own flying experience and the one
of all neighbouring particles in the swarm (Eberhart and Shi , 1998).

Considering a D-dimensional search-space, position and velocity for the i-
th particle are represented by ~Xi = xi1, xi2, . . . , xiD and ~Vi = vi1, vi2, . . . , viD,
respectively. The performance of each particle is assessed through a problem-
specific “goodness-of-fit” measure, which is the basis for calculating ~Xi, thus,
reflecting the quality of the particle’s position. The best-known position of
the i-th particle (known as personal best) is represented by ~Pi = pi1, pi2, . . . , piD,
whereas the best-known position for the neighbouring particles (known as lo-

cal best) is represented by ~G = g1, g2, . . . , gD. Velocity and position of the
i-th particle are updated according to the following equations,

~V t+1
i = ω~V t

i + c1
~U t

1 ⊗ (~P t
i − ~X t

i ) + c2
~U t

2 ⊗ (~Gt − ~X t
i ) (1)

or (Clerc and Kennedy , 2002),

~V t+1
i = χ

[
~V t
i + c1

~U t
1 ⊗ (~P t

i − ~X t
i ) + c2

~U t
2 ⊗ (~Gt − ~X t

i )
]

(2)

~X t+1
i = ~X t

i + ~V t+1
i (3)

where i = 1, 2, . . . , N , with N equal to the swarm size, and t = 1, 2, . . . , T ,
with T equal to the maximum number of iterations. ω is defined as the inertia
weight, which was introduced in early PSO variants to avoid particles flying
around their best-known position without converging to it. c1 and c2 are the
cognitive and social acceleration coefficients, which control the influence of
the personal and the local best. These two parameters influence the trade-
off between the local exploitation and the global exploration search abilities
of the algorithm (Shi and Eberhart , 1998). ~U1 and ~U2 are independent and
uniformly distributed D-dimensional random vectors in the range [0, 1] used
to maintain the “diversity” of the population (note that ⊗ denotes element-
wise vector multiplication). χ is the constriction factor defined by
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χ =
2κ

|2− ϕ−
√
ϕ2 − 4ϕ|

(4)

where κ ∈ [0, 1] and ϕ = c1 + c2 > 4, with typical values of κ = 1, c1 =
c2 = 2.05 and ϕ = 4.1. It should be noted that equations 1 and 2 are
mathematically equivalent for appropriate values of the coefficients ω, c1,
and c2.

The inclusion of the inertia weight (ω) or the constriction factor (χ)
in equations 1 or 2 aims to prevent swarm explosion, i.e. an uncontrolled
increase of the magnitude of velocities (particle displacement) (Poli et al.,
2007). In addition to this, Eberhart and Shi (2000) suggest constraining par-

ticle velocity to within the range [−~V max, ~V max] with ~V max = ~Xmax, and
~Xmax as the limits of the search space. In case this constraint is violated, the
d-dimensional component of the velocity for the i-th particle is set directly
to the closest velocity bound as follows

vid =

{
vmaxd , vid > vmaxd

−vmaxd , vid < −vmaxd

(5)

Equations 1 to 5 can be considered as the canonical PSO algorithm, with
the whole swarm as a single neighbourhood (see Kennedy , 2006), which is
summarised as follows

Algorithm 1 Canonical PSO algorithm.

1: for i = 1 to N do {for each particle in the swarm}
2: Initialise particles’ positions ( ~Xi) and velocities (~Vi)

3: Initialise personal best, ~Pi, and local best, ~G
4: repeat
5: for i = 1 to N do
6: Pick random vectors ~U1 and ~U2

7: Update particle’s velocity using equations 1 or 2
8: Update particle’s position using equation 3
9: if f( ~Xi) < f(~Pi) then {minimization of f}
10: Update particle’s best-known position ~Pi = ~Xi

11: if f(~Pi) < f(~G) then {minimization of f}
12: Update the neighbourhood’s best-known position ~G = ~Pi
13: until [nr. of iterations (T ) or tolerance error is met]

13



(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 2: Examples of topologies for an i-th particle (blue) interacting with
its neighbourhood and the local best (yellow): (a) gbest ; (b) lbest ; and (c)
von Neumann (2D-projected).

2.2 Topologies

Particles in the swarm interact by defining a common set of links. These
links control the exchange of information, i.e. they inform each particle of the
best-known position of neighbouring particles, and are defined as the swarm
topology (see Figure 2). The set of particles “informing” the i-th particle at
the t-th iteration is termed the particle’s neighbourhood, and includes the
particle itself as a member (Clerc, 2007).

A vast number of swarm topologies has been investigated and reviewed
in the literature (see, e.g., Kennedy , 1999; Kennedy and Mendes , 2002, 2003;
Mendes , 2004; Poli et al., 2007). Two of the most common correspond to
the so-called gbest and lbest. In the gbest topology all particles are inter-
connected and, thus, the best-known particle influences all the remaining
particles in the swarm. This topology is generally recognised to have a fast
convergence but is highly vulnerable to sub-optimal solutions and premature
convergence (see, e.g., Mendes , 2004; Clerc, 2006; Poli et al., 2007). In the
lbest topology, each particle is connected to two immediate neighbours and,
thus, exchange of information with the best-known particle is restricted only
to the particle’s immediate neighbourhood. In general, the particle itself is
included as a member of its neighbourhood (Mendes , 2004; Clerc, 2006). The
lbest topology shows the advantage of allowing parallel searches in different
regions of the search-space (Poli et al., 2007), which results in a more thor-
ough search strategy. Accordingly, lbest shows a slower convergence and less
sensitivity to sub-optimal solutions compared to gbest.

Kennedy and Mendes (2002) investigate generalisations of the lbest topol-
ogy. One of their main findings is the relative superiority of the von Neu-
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mann structured neighbourhood, i.e. four neighbours. This topology is more
densely connected than lbest but less densely connected than gbest, thus, it
shows some parallelism with lbest but benefits from a larger neighbourhood
(Poli et al., 2007).

Finally, Clerc (2006) propose the so-called random topology. In this topol-
ogy, each particle informs k particles (and itself) chosen randomly, with the
parameter k usually set to 3 (Clerc, 2012). This results in each particle in-
forming at least one (itself) and at most k + 1 (including itself) particles,
and being informed by any number of particles between 1 and N . The ran-
dom topology can be considered as a special case of the lbest topology where
particles have k informants most of the time and the “connections” between
particles randomly change when the global optimum shows no improvement.
The random topology is used in the “Standard PSO 2011” algorithm, which
has become the benchmark in recent years.

2.3 PSO Variants and Fine-Tuning Options

Notwithstanding the inclusion of Vmax and ω aimed at overcoming premature
convergence to sub-optimal solutions, improvements to the canonical PSO are
still an active area of research (Poli et al., 2007). To date, a vast collection of
enhancements/variants has been suggested in the literature (see, e.g., Clerc,
2006; Kennedy , 2006; van den Bergh and Engelbrecht , 2006; Zhao, 2006; Poli
et al., 2007; Poli , 2008; Chen and Chi , 2010), resulting in a large group of
algorithms, which we cannot fully review or implement into a single piece of
software.

This section describes the PSO variants and state-of-the-art enhance-
ments implemented in the calibration engine of hydroPSO, which are further
summarised in Table 2.

2.3.1 PSO Variants

In equations 1 and 2 only two effective sources of “influence“ are considered
for updating the particles’ velocities, namely, the position of the particle’s
personal best, ~P , and the position of the local best, ~G. Mendes et al. (2004)
propose a PSO variant, which they refer to as Fully Informed Particle Swarm
(FIPS), where information drawn from all the particles in the neighbourhood
(i.e. not only the best one) contributes to adjusting the particle’s velocity.
FIPS is implemented as follows,

~V t+1
i = χ

[
~V t
i +

1

Ki

Ki∑
n=1

~U t
1(0, ϕ)⊗ (~P t

nbrn − ~X t
i )

]
(6)

15



where Ki is the number of neighbours for the i-th particle, and ~Pnbrn is
the position of the particle’s n-th neighbour. Additionally, Mendes et al.
(2004) propose a second PSO variant, which they refer to as weighted FIPS
(wFIPS). In wFIPS the contribution of each neighbour to the adjustment of
a particle’s velocity is weighted by the corresponding goodness-of-fit of its
personal best. Performance of both FIPS and wFIPS is highly sensitive to
the topology employed (Poli et al., 2007), however, for topologies with few
neighbours they outperform the canonical PSO algorithm (Mendes et al.,
2004; Kennedy , 2006).

A third PSO variant implemented in hydroPSO corresponds to the Im-
proved Particle Swarm Optimisation (IPSO) by Zhao (2006). In IPSO the

term representing the social influence (i.e., ~Gt − ~X t
i , in equations 1 or 2) is

enhanced by using information drawn from a subset containing the ngb best
performing particles in the neighbourhood. According to Zhao (2006) this
variant follows the analogy where a group of leaders, i.e. the best perform-
ing particles for an iteration, could influence positively better decisions for
society (swarm) compared to a case when a single leader is followed. IPSO
is implemented as follows

~V t+1
i = ω~V t

i + c1
~U t

1 ⊗ (~P t
i − ~X t

i ) +

ngb∑
j=1

c2,j
~U t

2,j ⊗ (~Gt
j − ~X t

i ) (7)

where coefficient c2,j is defined by

c2,j = c2ĝj (8)

where ĝj is a weighting factor based on the values of the goodness-of-fit for
the ngb particles.

2.3.2 Fine-Tuning Options

In this section several options used to tailor the calibration engine to specific
user needs are described. We should note here that the effectiveness of these
options has generally been tested against the “canonical” PSO algorithm.

1. PSO Parameters
The PSO algorithm includes a few parameters that have to be carefully
selected in order to avoid swarm explosion and to ensure proper con-
vergence of the algorithm. These parameters include: a) inertia weight
(ω) or the Clerc’s constriction factor (χ), b) the cognitive acceleration
coefficient (c1), and c) the social coefficient (c2).
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Several definitions for the inertia weight (ω) have been extensively in-
vestigated and, hence, will not be further developed here. Shi and
Eberhart (1998) initially propose a linearly decreasing variation for
ω. This strategy forces an extensive exploration of the search-space
at initial iterations, which gradually shifts to a more dissipative (“ex-
ploitative”) search at later iterations (Poli et al., 2007). Alternative
ω definitions implemented in hydroPSO include: a) linear (Shi and
Eberhart , 1998), b) non-linear (Chatterjee and Siarry , 2006), c) adap-
tive factor (Liu et al., 2005), d) global-local best ratio (Arumugam and
Rao, 2008), and e) fully random (Eberhart and Shi , 2001). These al-
ternative definitions for ω allow the modeller to fine-tune the “exploita-
tion/exploration” properties of the algorithm for different calibration
problems.

Depending on the nature of the optimisation/calibration problem, the
definition of the acceleration coefficients c1 and c2 may have a dras-
tic impact on the algorithm’s performance. Ratnaweera et al. (2004)
suggest that time-varying acceleration coefficients (TVAC) may reduce
premature convergence at the first stages of the search and improve
convergence at later iterations. For example, a large value of c1 and a
small value of c2 at initial iterations allow the particles to “fly” around
the search-space instead of moving towards their personal best. For
later iterations, in turn, a small value of c1 and a large value of c2 allow
the particles to converge to the global attraction zone. Based on this,
linear, non-linear, and global-local best ratio (only for c1) TVAC are
implemented in hydroPSO to fine-tune the coefficients c1 and c2.

2. Boundary Conditions
In many optimisation/calibration problems it is a good practice to con-
fine particle position to physically meaningful parameter ranges. In hy-
droPSO this is done by using a D-dimensional vector defining the range
of the search-space (Ψ = {(ψmin1 , ψmax1 ), (ψmin2 , ψmax2 ), . . . , (ψminD , ψmaxD )}).
The behaviour of the particles at these boundaries may influence the
exploration of the search-space (Robinson and Rahmat-Samii , 2004).
Generally, four types of boundary condition may be imposed on a par-
ticle reaching the boundary of the search-space: a) absorbing, where
the particle’s position is set to the boundary value and the velocity is
set to zero; b) invisible, where the particle is allowed to “fly” beyond
the boundaries without limiting either its position or velocity, but its
goodness-of-fit is not evaluated, c) reflecting, where the sign of the ve-
locity in the overshot dimension is changed and the particle is reflected
back to the search-space; and d) damping, where part (1-f) of the veloc-
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ity is absorbed by the boundary and part (f) is reflected back, with f
as a random damping factor in [0,1] (see Robinson and Rahmat-Samii ,
2004; Huang and Mohan, 2005; Clerc, 2012).

3. Regrouping Strategy
In the case of premature convergence (i.e. when the proposed solution
approximates a local rather than a global optimum) or to validate the
global attraction zone at final iterations, a suitable mechanism allowing
particles to escape from sub-optimal solutions is required. Evers and
Ghalia (2009) propose a strategy that avoids stagnation of particles
by automatically triggering swarm regrouping (see Table 2 for details).
At each iteration the swarm radius (δt) is computed as the maximum

Euclidean distance between the position of the swarm optimum (~G)

and any given particle ( ~Xi). Then, regrouping is triggered when the
normalised swarm radius (δtnorm) is less than a user-defined stagnation
threshold (ε). The swarm is regrouped around the swarm optimum by
using an updated range (ranged(Ψ

r) where r is the swarm regrouping
index ) calculated as the minimum between (i) the original range of the
search-space on dimension d, and (ii) the product of the regrouping
factor (ρ) with the maximum distance along dimension d between any
particle and the swarm optimum. This regrouping method defines a
reduced search-space (Ψr), which is small enough for an efficient search
and large enough to allow particles to escape from sub-optimal solu-
tions.

4. Other Options
In hydroPSO sampling of initial particle position ( ~Xini) and velocity

(~Vini) might be improved by including a Latin Hypercube sampling
(McKay et al., 1979) over the full D-dimensional search-space in order
to ensure a fair initialisation of the D exploration.

To enhance a faster propagation of the best solutions found throughout
the swarm, Mussi et al. (2009) discuss two strategies for updating the
particle and local best position. In the synchronous strategy the local
best is updated only after computing and updating the position and
personal best of all particles in the swarm. In the asynchronous strat-
egy, the local best is updated immediately after each particle’s position
is updated.

For later stage iterations, oscillation of the particles around the local
best may be restricted by using a time-varying ~Vmax. This reduces
the search-space for latter stage iterations and, thus, complements the
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effect of (ω). This is suggested by the authors of hydroPSO following
Chatterjee and Siarry (2006).

Finally, hydroPSO (>=0.3-0) offers parallel capabilities to speed up
the optimisation process in multi-core machines or cluster networks,
which are easily configured.

2.4 Standard PSO 2011 (SPSO 2011)

In a series of technical reports (see Clerc, 2007, 2009, 2012), a clear need to
define a “Standard PSO algorithm” has been identified. This stems mainly
from the need to establish a common benchmark to assess the performance of
the numerous PSO improvements proposed in the literature. To date, three
versions of the standard PSO algorithm exist: SPSO 2006, SPSO 2007, and
SPSO 2011 (Clerc, 2012). We should point out that SPSO 2011 has in fact
been designed as a benchmark for algorithm performance and is not intended
to be the best available PSO algorithm in the literature (Clerc, 2012).

The most recent benchmark proposed, SPSO 2011, starts by defining a
centre of gravity (Gr) around the current ( ~X t

i ), previous best (~p ti ), and local

best positions (~l ti ) as follows,

~p ti = ~X t
i + c1

~U t
1 ⊗ (~P t

i − ~X t
i ) (9a)

~l ti = ~X t
i + c2

~U t
2 ⊗ (~Gt − ~X t

i ) (9b)

~Gr
t

i =
( ~X t

i + ~p ti +~l ti )

3
(9c)

then, a random point is defined in the hypersphere H( ~Gr
t

i, || ~Gr
t

i− ~X t
i ||), and

velocity is updated as follows,

~V t+1
i = ω~V t

i + rH( ~Gr
t

i, || ~Gr
t

i − ~X t
i ||)− ~X t

i (10)

where r is a random number in [0, 1]. The particle’s position is updated
following equation (3).

Despite the fact that SPSO 2011 is an improvement to the previous SPSO
2007 in terms of accounting for rotational invariance, SPSO 2007 could per-
form better than SPSO 2011 for separable and (less likely) for non-separable
functions (Maurice Clerc, developer SPSO 2007 & 2011, personal commu-
nication, 2012). This is the main reason for including both SPSO 2007 &
SPSO 2011 in the hydroPSO R package.
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Table 2: Main features for customising the hydroPSO calibration engine.
Feature hydroPSO argument Description References

1. PSO Variants method="spso2011" 1.1. Standard PSO 2011 Clerc (2012)
method="spso2007" 1.2. Standard PSO 2007 Clerc (2012)
method="fips" 1.3. Fully Informed Particle Swarm Mendes et al. (2004)
method="wfips" 1.4. Weighted FIPS Mendes et al. (2004)
method="ipso" 1.5. Improved PSO (IPSO) Zhao (2006)
method="canonical" 1.6. Canonical PSO Clerc (2007)

2. Topologies topology="random" 2.1. Random (k = 3) Clerc (2012)
topology="lbest" 2.2. lbest Kennedy and Mendes (2002)
topology="vonNeumann" 2.3. von Neumann (k = 4) Kennedy and Mendes (2002)
topology="gbest" 2.4. gbest Kennedy and Mendes (2002)

3. Boundary conditions boundary.wall="absorbing2011" 3.1. Absorbing Clerc (2012)
boundary.wall="absorbing2007" 3.2. Absorbing Clerc (2012)
boundary.wall="reflecting" 3.3. Reflecting Robinson and Rahmat-Samii (2004)
boundary.wall="invisible" 3.4. Invisible Robinson and Rahmat-Samii (2004)
boundary.wall="damping" 3.5. Damping Huang and Mohan (2005)

4. Definition of Xini Xini.type="random" 4.1. Random Eberhart and Kennedy (1995)
Xini.type="lhs" 4.2. Latin Hypercube Sampling (LHS) hydroPSO

5. Definition of Vini Vini.type="random2011" 5.1. Random following SPSO 2011 Clerc (2012)
Vini.type="lhs2011" 5.2. LHS following SPSO 2011 Clerc (2012)
Vini.type="random2007" 5.3. Random following SPSO 2007 Clerc (2012)
Vini.type="lhs2007" 5.4. LHS following SPSO 2007 Clerc (2012)
Vini.type="zero" 5.5. Zero velocity hydroPSO

6. Definition of use.IW=TRUE, IW.w=1/(2*log(2)) 6.1. Linear variation

inertia weight ω IW.type="linear" ωiter =
[
itermax−iter
itermax

]
(ωini − ωfin) + ωfin

[a] Shi and Eberhart (1998)

6.2. Non-linear variation

IW.type="non-linear" ωiter =
[
itermax−iter
itermax

]n
(ωini − ωfin) + ωfin

[a] Chatterjee and Siarry (2006)

6.3. Adaptive Inertia Weight Factor (AIWF)

IW.type="aiwf" ωiter =

{ [
(ωmax−ωmin)(f−fmin)

favg−fmin

]
+ ωmin , f ≤ favg

ωmax , f > favg

[b] Liu et al. (2005)

6.4. Global-Local best ratio inertia weight

IW.type="GLratio" ωiter = 1.1 +
Gt

d

P t
id

[c] Arumugam and Rao (2008)

6.5. Random inertia weight

IW.type="runif" ωiter = 0.5 +
rnd(ωini,ωfin)

2
[d] Eberhart and Shi (2001)

7. Time-varying use.TVc1=FALSE, c1=0.5log(2)+ 7.1.1. Linear variation

acceleration coefficients TVc1.type="linear" c1iter =
[

iter
itermax

(c1fin − c1ini)
]

+ c1ini
[e] Ratnaweera et al. (2004)

TVc1.type="non-linear" 7.1.2. Non-linear variation

c1iter =
[

iter
itermax

(c1fin − c1ini)
]n

+ c1ini
[e] hydroPSO

TVc1.type="GLratio" 7.1.3. Global-Local best ratio

c1iter = 1.1 +
Gt

d

P t
id

Arumugam and Rao (2008)

use.TVc2=FALSE, c2=0.5log(2)+ 7.2.1. Linear variation

TVc2.type="linear" c2iter =
[

iter
itermax

(c2fin − c2ini)
]

+ c2ini
[e] Ratnaweera et al. (2004)

7.2.2. Non-linear variation

TVc2.type="non-linear" c2iter =
[

iter
itermax

(c2fin − c2ini)
]

+ c2ini
[e] Ratnaweera et al. (2004)

8. Time-varying use.TVlambda=FALSE ~V iter
max = λiter ~Xmax

maximum velocity 8.1. Linear variation

TVlambda.type="linear" λiter =
[

iter
itermax

(λfin − λini)
]

+ λini [g] Chatterjee and Siarry (2006)

8.2. Non-linear variation

TVlambda.type="non-linear" λiter =
[

iter
itermax

(λfin − λini)
]n

+ λini [g] hydroPSO

9. Regrouping use.RG=FALSE 9.1. swarm radius = δt = max‖
−→
X t

i −
−→
G t‖ [f] Evers and Ghalia (2009)

RG.thr=ε normalised swarm radius = δtnorm = δt

diam(Ψ)
< ε

diam(Ψ) = ‖ranged(Ψ)‖
ranged(Ψ) = XU

d −XL
d

RG.r=ρ ranged(Ψ
r) = min

{
ranged(Ψ

0), ρ max|Xr−1
id −G

r−1
d |
}

RG.miniter=r
−→
X i = Gr−1 +

[−→r3 · rangei(Ψr)− 1
2
rangei(Ψ

r)
]

V max
d = λranged(Ψ

r)

10. Update of positions best.update="sync" 10.1. Synchronous Mussi et al. (2009)
and velocities best.update="async" 10.2. Asynchronous Mussi et al. (2009)

11. Normalisation normalise=FALSE 11.1. Standard PSO 2011 Clerc (2012)

12. Parallelisation parallel="none" hydroPSO
par.nnodes=NA hydroPSO
par.pkgs=c() hydroPSO

a ωiter is the current inertia weight, ωini and ωfin are the initial and final inertia weights, and n is the non-linear modulation index.
b f is the current objective value of the particle, favg is the average objective value for all the particles, fmin is the minimum objective value of all the particles,
ωmax and ωmin are user-defined maximum and minimum values for ω.

c It sets a minimisation problem where Gt
d and P t

id are the local best and the average of all personal bests during iteration t, respectively.
d rnd() is a random number in [ωini, ωfin].
e c1ini, c1fin, c2ini, c2fin are constants.
f −→X t

i are particles’ positions,
−→
G t is local best location, ε is the stagnation threshold, diam(Ψ) is the diameter of the search-space, ranged(Ψ) is the length

of the search-space along dimension d, XU
d and XL

d are the upper and lower bounds of the search-space, Ψr is the regrouped search-space, r is the
swarm regrouping index, Ψ0 is the original search-space, ρ is the regrouping factor, −→r3 is a uniform random vector, and λ is a percentage to limit
~Vmax.

g λiter is a percentage to limit ~Vmax, and λini and λfin are the percentage to limit ~Vmax at the start and end of a given run, respectively.
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3 Description of the hydroPSO Package

hydroPSO is a multi-platform and model-independent R package that has
been designed to allow the user to perform sensitivity analysis, model cali-
bration, and assessment of the results. Sensitivity analysis is performed by
using the LH-OAT method (van Griensven et al., 2006). Sensitive param-
eters are then calibrated by tailoring the calibration engine to specific user
needs through the use of the numerous PSO variants and fine-tuning options
described in Section 2.3. Finally, advanced plotting functionalities together
with detailed information regarding the evolution of the algorithm’s perfor-
mance facilitate the interpretation and assessment of the calibration results.

3.1 Main hydroPSO Functions

The interaction among the main functions comprising the hydroPSO package
is shown in Figure 3. These functions have been specifically developed for
hydroPSO and are summarised in Table 3 and further described below.

Table 3: Main functions included in the hydroPSO R package.
Function Short Description

lhoat() Sensitivity analysis using LH-OAT (van Griensven et al., 2006)
hydromod() Control of the model code to be calibrated
hydroPSO() Multi-platform and model-independent enhanced PSO calibration engine
read_results() Reading of results produced by hydroPSO. It is a wrapper to:

read_particles() Reading “Particles.txt” output file
read_velocities() Reading “Velocities.txt” output file
read_out() Reading “Model out.txt” output file
read_convergence() Reading “ConvergenceMeasures.txt” output file
read_GofPerParticle() Reading “Particles GofPerIter.txt” output file

plot_results() Plotting of results produced by hydroPSO. It is a wrapper to:
plot_particles() Plotting parameters
plot_velocities() Plotting the evolution of particles’ velocities
plot_out() Plotting model outputs (simulated equivalents)
plot_convergence() Plotting the evolution of the global optimum and δtnorm
plot_GofPerParticle() Plotting the evolution of the goodness-of-fit per particle

verification() Run the model code with one or more parameter sets specified by the user
PEST2hydroPSO Import PEST (Doherty , 2010) files into input files for hydroPSO
hydroPSO2PEST Export hydroPSO files into input files for PEST
test_functions() Implementation of a set of n-dimensional test functions for benchmarking

1. The lhoat() function implements the Latin Hypercube One-factor-At-
a-Time (LH-OAT) sensitivity analysis technique (van Griensven et al.,
2006). lhoat() produces a ranking with the parameter having the
largest effect receiving a rank of 1 and the one(s) with the smallest
effect receiving a rank equal to the total number of parameters (D).
LH-OAT works by taking M LH sampling points (M strata for each
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hydromod()

hydroPSO()

Model run

out.FUN()

gof.FUN()

iter == maxit ?
abstol achieved ?*
reltol achieved ?**

Yes

ParamFiles.txt

Model Input File(s)

Model Output File(s)

GoF

sim

Parameter values

ParamRanges.txt

Random / LHS
Initialisation

Observations

END
PSO 

Engine

No

hydroPSO
Output Files

hydroPSO
Output Files

plot_results()verification()

test_functions()lhoat()

Figure 3: Flowchart describing the interaction of the main hydroPSO
functions. User-defined files ParamRanges.txt and ParamFiles.txt pro-
vide information on the parameters to be calibrated, whereas out.FUN(),
gof.FUN(), and observations are used to assess the quality of the particles’
positions through a goodness-of-fit measure. Light-blue shaded boxes require
user intervention (after Zambrano-Bigiarini and Rojas , 2012).

parameter) and then varying, by a fraction s, each LH sampling point
D times, where D is the number of parameters. For each LH sampling
point a partial impact for each parameter is calculated and then a final
impact (on model performance/predictions) is obtained by averaging
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these partial impacts. The method is very efficient requiring a total of
only M(D + 1) runs.

2. The hydromod() function is one of the key components of hydroPSO. It
has a unique role consisting of linking and controlling the execution of
the user-defined model code with the optimisation engine. hydromod()
first reads a set of parameter values, which are then written into the
corresponding model input file(s) by using the information provided
in the user-defined ParamFiles.txt file. ParamFiles.txt defines the
name of the model parameters, input files, and specific location of the
parameters in the input files. Unlike tools such as PEST (Doherty ,
2010), UCODE-2005 (Poeter et al., 2005), OSTRICH (Matott , 2005)
or MADS (Vesselinov and Harp, 2012), only one file is required to
define where each parameter is located, with no need for creating nu-
merous template files replicating model input files. Then, hydromod()
executes the model code to obtain the corresponding model outputs,
which are read through the out.FUN() R function. Finally, simulated
equivalents are compared against user-provided observations of system
state variables through a gof.FUN() R function. hydromod() returns
the simulated equivalents and the corresponding goodness-of-fit values.

3. The main calibration engine is implemented in the hydroPSO() func-
tion. This function is another key component of hydroPSO that in-
cludes state-of-the-art PSO variants and numerous fine-tuning options
to customise the calibration engine to specific user needs (see Ta-
ble 2). At the first iteration, parameter sets are sampled from a feasi-
ble range obtained from the user-defined ParamRanges.txt file. Then,
hydromod() is called to obtain a goodness-of-fit measure for each par-
ticle in the swarm, i.e. each parameter set. Particle velocity and
position evolve according to the user-defined PSO configuration un-
til some termination criteria are met (e.g. maximum number of iter-
ations (maxiter), relative changes in the personal best below a user-
defined threshold (reltol), or global optimum is below a user-defined
threshold (abstol)). hydroPSO() returns the optimum parameter set,
all sampled parameters and their corresponding goodness-of-fit, model
outputs, particle velocity, and convergence measures.

4. Results from the hydroPSO() function are post-processed using the
plot_results() function, which delivers a series of user-friendly and
customised plots to facilitate the assessment of the model calibration.
These plots include: parameter scatter plots, histograms and empirical
CDFs, (pseudo) 3D scatter plots, parameters and velocities for each
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iteration, goodness-of-fit value for each particle per iteration, and the
evolution of the convergence measures.

5. The verification() function is designed to validate (one or more)
user-defined parameter sets. It returns a goodness-of-fit measure for
each parameter set defined, the best parameter set, and the goodness-
of-fit measure corresponding to the best parameter set.

6. Function PEST2hydroPSO translates existing files generated to run a
PEST model calibration (i.e. *.tpl, *.pst, and *.ins) into the ba-
sic files to set up a hydroPSO optimisation (i.e. ParamFiles.txt,
ParamRanges.txt and hydroPSO-script.R).

7. Function hydroPSO2PEST translates the hydroPSO input files into the
basic files required for performing a PEST local-calibration. This func-
tion is particularly useful for obtaining detailed information on sen-
sitivity and uncertainty of parameters once a global optimisation has
been performed using hydroPSO. In particular, this function would al-
low linking hydroPSO with tools using PEST-based templates such as
OSTRICH, UCODE-2005, and squads/MADS.

8. The hydroPSO package includes a series of n-dimensional functions
commonly used as benchmarks to assess the performance of optimisa-
tion algorithms. These functions are described in the test_functions()
function.

3.2 ParamFiles.txt and ParamRanges.txt

For the case when hydroPSO is used to optimise any R function, the user
only needs to provide suitable values for the lower and upper arguments,
which define the minimum and maximum possible values for each parameter.
The length of lower and upper is used to define the dimension (D) of the
optimisation problem, with no need of any additional input file.

For the case when hydroPSO is used to calibrate an external model code
(i.e. not an R function but an executable file), two input files are required to
interface hydroPSO with the corresponding model, namely, ParamFiles.txt
and ParamRanges.txt. These two files are simple ASCII files used to define
which model parameters need to be calibrated and where they need to be
written, and they should suffice for basic applications. For more advanced
applications, hydroPSO may require the definition of additional R wrapper
functions, mainly for reading model outputs (out.FUN), and for computing
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model’s performance (gof.FUN). In sections 5.2 and 6.4 we provide examples
of both cases.

ParamFiles.txt file defines the exact location of the parameters to be
calibrated in the model input files. The format of ParamFiles.txt is as
follows,

ParamFiles.txt
ParameterNmbr ParameterName Filename Row.Number Col.Start Col.End DecimalPlaces

1 par1 file1 x1 y1 z1 w1

2 par2 file1 x2 y2 z2 w2

3 par3 file2 x3 y3 z3 w3

4 par4 file3 x4 y4 z4 w4

1 par1 file4 x5 y5 z5 w5

1 par1 file5 x5 y5 z5 w5

. . . . . . .

. . . . . . .

. . . . . . .

n parn filem xn yn zn wn

where ParameterNmbr is a consecutive number assigned to each parameter,
ParameterName is a user-defined parameter name, Filename is the name
of the model input file where the corresponding ParameterName is located,
Row.Number is the row number in the Filename file where ParameterName

can be found, Col.Start and Col.End define the column numbers in the
Filename file where ParameterName have to be written, and DecimalPlaces

defines the decimal places used for writing the corresponding ParameterName

value. Please note that the same file (file1) can include more than one
parameter (par1 and par2) located in different places in the file, and also
that the same parameter (par1) can appear in different input files (file1,
file4, file5). In addition, it is very important to define Col.Start and
Col.End in such a way that the parameter value AND its decimal places
fit the width defined as Col.Start - Col.End + 1. For users familiar with
PEST (Doherty , 2010), Col.Start and Col.End are equivalent to the token
used to define where to write parameters during the optimisation.

ParamRanges.txt file defines the feasible range for each parameter to be
calibrated. The format of ParamRanges.txt is as follows,

ParamRanges-Sens.txt
ParameterNmbr ParameterName MinValue MaxValue

1 par1 min1 max1

2 par2 min2 max2

3 par3 min3 max3

4 par4 min4 max4

5 par5 min5 max5

. . . .

. . . .

. . . .

n parn minn maxn
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where MinValue and MaxValue are the minimum and maximum parameter
values, respectively. Note that care must be taken in numbering and naming
the parameters to be calibrated as they require to be consistent in both files.
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4 Step-by-Step hydroPSO Application

4.1 Setting Up the Environment

1. In the R console, use the next commands to retrieve the current working
directory, set a new working directory, and list the files included in the
new working directory, respectively.

> getwd()

> setwd("~")

> list.files(".")

2. Installing the latest stable version of hydroPSO.

> install.packages("hydroPSO")

3. Loading the hydroPSO library containing functions, help pages, and
examples used in this analysis.

> library(hydroPSO)

4.2 Basic hydroPSO Application

This section illustrates the implementation of the hydroPSO package to op-
timise two (highly) multi-modal and multi-dimensional test functions with a
considerable number of local sub-optimal solutions. These functions are com-
monly used as benchmarking for the performance of optimisation algorithms.
Otherwise stated, the optimal solution for these functions is zero.

In this section we do not aim at finding an “optimum” configuration for
the hydroPSO parameters, which in itself can be a massive task. Instead,
we illustrate a few controlling options to handle problems such as premature
convergence for (highly) multi-modal objective functions. We refer the reader
to Zambrano-Bigiarini and Rojas (2012) for the results of a validation of
hydroPSO against the Standard PSO 2011 (SPSO 2011) (Clerc, 2012).

4.2.1 Optimisation of Ackley Function

1. The Ackley function is a multi-modal and separable function with
several local optima located at regular intervals and a global optimum
at o=(0,...,0). Complexity of the Ackley function is moderated re-
sembling a noisy pattern in the range [-32;32]. The Ackley function is
defined by:
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f(x) = 20 + exp(1)− 20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i

− exp

(
1

2

n∑
i=1

cos(2πxi)

)
;

− 32.7 ≤ xi ≤ 32.7 ; i = 1, 2, . . . , n.

(11)

2. For optimising the Ackley function we need to define the upper and
lower limits of the search space [-32;32] and its dimensionality (D=10).
hydroPSO default values are used for the optimisation (method="spso2011",
npart=40, maxit=1000):

> D <- 10

> lower <- rep(-32,D)

> upper <- rep(32,D)

> set.seed(1111)

> hydroPSO(fn=ackley,lower=lower,upper=upper)

$par

Param1 Param2 Param3 Param4

-2.653285e-06 7.559908e-07 -3.300330e-07 -4.472642e-08

Param5 Param6 Param7 Param8

-1.556062e-06 -1.537707e-06 -5.336524e-07 7.740605e-07

Param9 Param10

-6.617440e-07 9.748457e-07

$value

[1] 4.86307e-06

$best.particle

[1] 8

$counts

function.calls iterations regroupings

9200 230 0

$convergence

[1] 1

$message

28



[1] "Converged ('reltol' criterion)"

Solution for the optimisation is reached at iteration 230 (9200 function
calls (40*230)), with an optimum value of 4.863E-06.

In the previous example, the hydroPSO finished before reaching the
maximum number of iterations (by default maxit=1000) because the
relative tolerance (reltol) was met. reltol is defined (by default) on
the basis of the precision of the computational platform employed as
sqrt(.Machine$double.eps), which is typically in the order of 1E-8.

3. Using less particles (i.e. less function evaluations) to get a global opti-
mum similar to the previous one. For this case, 20 particles.

> set.seed(1111)

> hydroPSO(fn=ackley,lower=lower,upper=upper,

+ control=list(npart=20))

$par

Param1 Param2 Param3 Param4

1.230005e-06 2.246731e-07 -3.501479e-06 2.378093e-06

Param5 Param6 Param7 Param8

-2.626830e-06 -2.202960e-06 1.924229e-06 1.449411e-06

Param9 Param10

-1.369645e-06 3.520221e-06

$value

[1] 9.0604e-06

$best.particle

[1] 15

$counts

function.calls iterations regroupings

5040 252 0

$convergence

[1] 1

$message

[1] "Converged ('reltol' criterion)"
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For this case the solution for the optimisation is reached at iteration
252 with an optimum value of 9.06E-06, but only with 5040 function
calls.

4. Plotting the results:

> plot_results(do.png=TRUE, MinMax="min", do.pairs=TRUE)

By default plot_results plots directly to the R graphical device. Us-
ing the option do.png=TRUE all the the graphical outputs are re-directed
to png files stored in ./PSO.out/pngs/. Setting do.pairs=TRUE allows
the creation of a matrix plot summarizing the interaction among pa-
rameters (cross-correlation, histograms, and statistical significance of
the correlation). Results produced are shown in Figures 4-13.

Figure 4 shows the evolution of the Global Optimum and the Nor-
malised Swarm Radius (NSR). The latter indicates the convergence
of the swarm to the (optimum) attraction zone. Assessment of both
Global Optimum and NSR is particularly useful when the regrouping
strategy used to tackle premature convergence is activated (use.RG=TRUE).

Figure 5 shows dotty-plots for each of the 10 parameters, where each
dot represents an evaluation of the function (model) being optimised.
By default, dotty-plots are shown for all parameter sets, however, and
as seen from Figure 5, not all of them may show a good performance.
At the same time, Figure 6 shows boxplots summarizing each parame-
ter. Using the options beh.thr and MinMax, a “behavioural” threshold
is defined to select a sub-set of the best performing parameters. By
defining beh.thr we discard parameters showing a poor performance
and, as such, this shows some parallelism with the specification of the
rejection threshold in Generalized Likelihood Uncertainty Estimation
(GLUE) (see Beven, 2006) or the definition of the burn-in samples in
Markov Chain Monte Carlo (MCMC) simulation (see Gelman et al.,
2004).

Interaction between parameters is shown in Figure 7. This figure shows
the interaction between the first 5 parameters (selected by default by
hydroPSO) as a function of the goodness-of-fit. Using dp3D.names

the user can select specific parameters to plot. If the option beh.thr

is specified, this figure shows the sub-set representing only the best-
performance particles.

Figure 8 shows a (matrix) summary of the interaction among param-
eters. Here, the statistical significance of the correlation as well as
dispersion-like and histogram plot summaries are obtained.
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Empirical Cumulative Distribution Functions (ECDFs) for each pa-
rameter are shown in Figure 9. ECDFs are created for all parameter
sets evaluated unless the beh.thr option is specified. In the last case,
ECDFs are built from the sub-set representing the best performance.

Figure 10 shows the histograms of parameters. As in Figures 7 and 9,
these histograms are calculated for all parameter sets retained unless
the beh.thr option is specified.

Finally, Figures 11, 12 and 13 provide detailed information about the
evolution of the goodness-of-fit function per iteration for each parti-
cle defined in the swarm, and particles’ positions and velocities versus
function (model) evaluation, respectively.
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Figure 4: Global Optimum and Normalised Swarm Radius versus iteration
number.

Figure 5: Dotty-plots for each parameter.
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Figure 6: Box-plots for each parameter.

Figure 7: 2-dimensional projected dotty-plots highlighting the interaction
between parameters.

33



Figure 8: Matrix summarizing the interaction among parameters (e.g. cross
correlation, histograms, and statistical significance of the correlation).

Figure 9: Empirical Cumulative Distribution Functions (ECDFs) for param-
eters.
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Figure 10: Histograms for parameters.

Figure 11: Goodness-of-fit measure for particles per iteration.
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Figure 12: Parameter value per run.

Figure 13: Particle velocities per run.
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4.2.2 Optimisation of Rastrigin Function

1. The Rastrigin function (Equation 12) is a non-convex, multi-modal
and additively separable function. It has several local optima arranged
in a regular lattice with a global optimum located at o=(0,...,0). The
search range for the Rastrigin function is [-5.12;5.12] in each variable.
This function is a fairly difficult problem due to its large search space
and its large number of local minima. Gradient-based algorithms will
be most likely trapped in local optima.

f(x) = 10n+
n∑
i=1

[
x2
i − 10 cos(2πxi)

]
;

− 5.12 ≤ xi ≤ 5.12 ; i = 1, 2, . . . , n.

(12)

2. For optimising the Rastrigin function we need to define the upper
and lower limits of the search space [-5.12;5.12] and its dimension-
ality (D=5). Default values are used for the hydroPSO optimisa-
tion engine (method="spso2011", npart=40, maxit=1000), whereas
write2disk=FALSE is selected to speed up the optimisation by avoiding
writing the results to the disk:

> D <- 5

> lower <- rep(-5.12,D)

> upper <- rep(5.12,D)

> set.seed(100)

> hydroPSO(fn=rastrigin, lower=lower, upper=upper,

+ control=list(write2disk=FALSE))

$par

Param1 Param2 Param3 Param4

4.382399e-05 9.947626e-01 9.950853e-01 9.948407e-01

Param5

5.619973e-05

$value

[1] 2.984892

$best.particle

[1] 5
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$counts

function.calls iterations regroupings

5920 148 0

$convergence

[1] 1

$message

[1] "Converged ('reltol' criterion)"

In the previous example, the algorithm finished before reaching the
maximum number of iterations (maxit=1000) because the relative tol-
erance was reached. Therefore, we decrease the relative tolerance to
allow all the iterations be executed reltol=1E-20.

3. Using the vonNeumann topology:

> set.seed(100)

> hydroPSO(fn=rastrigin,lower=lower,upper=upper,

+ control=list(topology="vonNeumann", reltol=1E-20,

+ REPORT=50, write2disk=FALSE))

$par

Param1 Param2 Param3 Param4

-7.074624e-10 2.367807e-09 1.368931e-09 9.949586e-01

Param5

-9.949586e-01

$value

[1] 1.989918

$best.particle

[1] 33

$counts

function.calls iterations regroupings

40000 1000 0

$convergence

[1] 3
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$message

[1] "Maximum number of iterations reached"

With this configuration, the maximum number of iterations was reached
(see the message output), with a better global optimum than in the
previous case (1.99).

4. From the R console output we see premature convergence around it-
eration 300 for a NSR ca. 7.0E-02, where the global optimum got
stagnated in 1.990E+00. One option implemented in hydroPSO to
tackle this problem corresponds to the “regrouping strategy” developed
by Evers and Ghalia (2009). For this case we activate the regrouping
strategy (use.RG) when the NSR is smaller than a threshold RG.thr

equal to 7.0E-02, whereas the output directory is set to a user-defined
value (drty.out="PSO.out.rastr") and we report results to the screen
every 50 iterations (REPORT=50):

> set.seed(100)

> hydroPSO(fn=rastrigin,lower=lower,upper=upper,

+ control=list(topology="vonNeumann", reltol=1E-20,

+ drty.out="PSO.out.rastr", use.RG=TRUE,

+ RG.thr=7e-2,RG.r=3, RG.miniter=50,

+ REPORT=50))

$par

Param1 Param2 Param3 Param4

-3.249248e-06 -7.620773e-06 1.241578e-05 -2.879237e-06

Param5

-9.949444e-01

$value

[1] 0.9949591

$best.particle

[1] 38

$counts

function.calls iterations regroupings

40000 1000 3

$convergence

[1] 3
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$message

[1] "Maximum number of iterations reached"

From the previous example we see that the regrouping strategy al-
lows particles escaping from stagnation and finding a new optimum
(9.9E-01), which is better than the optimisation without regrouping
(1.99E+00) for the same number of iterations (maxit=1000).

5. By setting the working directory to PSO.out and using the read_convergence
hydroPSO function we can directly assess the results from the optimi-
sation as function of the iterations:

> setwd("./PSO.out.rastr")

> conv <- read_convergence(do.png=TRUE,

+ png.fname="ConvergenceMeasuresRG.png")

Figure 14 shows the effect of the regrouping strategy. In this figure
we observe the first stagnation occurring at iteration 111, and the cor-
responding triggering of the regrouping for NSR values smaller than
7.0E-02. After the first triggering, a new exploration stage is activated
until a second stagnation is observed (at iteration 355), triggering a sec-
ond re-grouping of the swarm. The aforementioned process is repeated
a third time at iteration 786 before reaching the maximum number of
iterations.

6. Using the fips PSO variant with a gbest topology:

> set.seed(100)

> hydroPSO(fn=rastrigin,lower=lower,upper=upper,

+ method="fips", control=list(topology="gbest",

+ reltol=1E-9, write2disk=FALSE))

$par

Param1 Param2 Param3 Param4

-2.164684e-06 -9.848671e-07 7.784858e-07 1.505466e-06

Param5

-5.175599e-07

$value

[1] 1.745086e-09

$best.particle
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Figure 14: Effect of regrouping strategy on the Global Optimum and the
Normalised Swarm Radius (NSR) versus iteration number.

[1] 40

$counts

function.calls iterations regroupings

3720 93 0

$convergence

[1] 1

$message

[1] "Converged ('reltol' criterion)"

With the fips variant the maximum relative tolerance was reached,
but with a global optimum much better than in the previous cases
equal to 1.745E-09.

7. Finally, using the fips PSO variant with a relative tolerance of 1E-20
and an absolute tolerance equal to 0:

> set.seed(100)

> hydroPSO(fn=rastrigin,lower=lower,upper=upper,
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+ method="fips", control=list(topology="gbest",

+ reltol=1E-20, abstol=0, write2disk=FALSE,

+ REPORT=10))

$par

Param1 Param2 Param3 Param4

7.788527e-10 8.870123e-10 8.663895e-10 -2.135894e-09

Param5

-2.879583e-09

$value

[1] 0

$best.particle

[1] 3

$counts

function.calls iterations regroupings

5320 133 0

$convergence

[1] 0

$message

[1] "Converged ('abstol' criterion)"

This time we obtained the true global optimum for the Rastrigin func-
tion at 0.

hydroPSO has been validated (in terms of computational implementa-
tion) against the Standard PSO 2011 algorithm developed by Clerc (2012)
employing different test functions commonly used to assess the performance
of optimisation algorithms. Validation indicates that both the Standard PSO
2011 and hydroPSO produce comparable average results for fixed boundary
condition, topology, inertia weight and number of iterations. At the same
time, we have validated the performance of hydroPSO against standard opti-
misation (calibration) algorithms such as SCE UA (Duan et al., 1992, 1994),
DREAM (Vrugt et al., 2008), and DEOptim (Mullen et al., 2011). For a
detailed validation analysis we refer the reader to Zambrano-Bigiarini and
Rojas (2012).

Finally, here we have illustrated a few options to increase the performance
of the hydroPSO package or to adapt the optimisation engine to different
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problems (e.g. premature convergence). hydroPSO offers numerous fine-
tuning options that are worth exploring for specific optimisation problems.
We must note, however, that a successful optimisation for a given model code
is most likely a proper combination of modeller’s expertise and a versatile
optimisation engine.
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5 Calibration of a Semi-Distributed Hydro-

logical Model Using hydroPSO

5.1 Hydrological System and Conceptualization

The Ega River is a tributary of the Ebro River and originates in Álava
(Cantabrian mountain range) flowing through the province of Navarra (see
Figure 15). It has an area of 1445 km2 and elevations ranging from 300 to
1400 m above sea level (a.s.l.) (CHE , 2000). For the implementation of the
hydroPSO package we concentrate on the headwater of the Ega catchment.
This upper catchment has an area of 808 km2, mean annual precipitation of
ca. 818 mm year−1 and mean daily discharge equal to 12.5 m3 s−1 measured
in Ega en Estella (Q071 in Figure 15) for the period 1961-1990.

Simulated daily discharges were obtained with the Soil and Water As-
sessment Tool (SWAT) 2005 (Arnold et al., 1998; Arnold and Fohrer , 2005),
which is a basin scale, physically-based, continuous-time hydrological model
operating on a daily time step. Model components include weather, hy-
drology, erosion/sedimentation, and diverse components for the plant-soil-
nutrients system. For a full overview the reader is referred to Arnold et al.
(1998) and Neitsch et al. (2005).

Figure 15: Location of the Ega River catchment and gauging station (Q071)
used for calibration.
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Table 4: Parameters of the SWAT-2005 model relevant for hydrological sim-
ulation. Range and sensitivity ranking constitute the basis for the implemen-
tation of the hydroPSO package to calibrate SWAT-2005 in the upper Ega
catchment.

Parameter
SWAT-2005 Range Default Sensitivity

File Min Max Value Ranking1

Baseflow alpha factor [days] ALPHA BF *.gw 1.00e-01 9.90e-01 4.80e-02 1
Manning’s “n” value for the main channel [-] CH N2 *.rte 1.60e-02 1.50e-01 1.40e-02 2
Initial SCS CN II value [-] CN2 *.mgt 4.00e+01 9.50e+01 5.21e+022 3
Saturated hydraulic conductivity [mm/hr] SOL K *.sol 1.00e-03 1.00e+03 4.28e+002 4
Available water capacity [mm H2O/mm soil] SOL AWC *.sol 1.00e-02 3.50e-01 1.20e-012 5
Effective hydraulic conductivity in main channel alluvium [mm/hr] CH K2 *.rte 0.00e+00 2.00e+02 0.00e+00 6
Soil evaporation compensation factor [-] ESCO *.hru 1.00e-02 1.00e+00 9.50e-01 7
Surface runoff lag time [days] SURLAG *.bsn 1.00e+00 1.20e+01 4.00e+00 8
Snowfall temperature [◦C] SFTMP *.bsn -5.00e+00 5.00e+00 1.00e+00 9

Snowmelt base temperature [◦C] SMTMP *.bsn -5.00e+00 5.00e+00 5.00e-01 103

Minimum melt factor for snow [◦C] SMFMN *.bsn 1.40e+00 6.90e+00 4.50e+00 113

Snowpack temperature lag factor [-] TIMP *.bsn 1.00e-02 1.00e+00 1.00e+00 123

Maximum melt factor for snow [◦C] SMFMX *.bsn 1.40e+00 6.90e+00 4.50e+00 133

Manning’s “n” value for overland flow [-] OV N *.hru 8.00e-03 6.00e-01 1.00e-01 143

Deep aquifer percolation factor [-] RCHRG DP *.gw 0.00e+00 1.00e+00 5.00e-02 153

Threshold water depth in the shallow aquifer for flow [mm] GWQMN *.gw 0.00e+00 5.00e+03 0.00e+00 163

Groundwater “revap” coefficient [-] GW REVAP *.gw 0.00e+00 2.00e-01 2.00e-02 173

Groundwater delay time [days] GW DELAY *.gw 1.00e+00 1.00e+02 3.10e+01 183

Moist soil albedo SOL ALB *.sol 0.00e+00 1.00e-01 1.00e-022 193

Threshold water depth in the shallow aquifer for “revap” [mm] REVAVMN *.gw 1.00e+00 5.00e+02 1.00e+00 223

Plant uptake compensation factor [-] EPCO *.bsn 1.00e-02 1.00e+00 1.00e+00 223

Maximum canopy storage [mm H2O] CANMX *.hru 0.00e+00 1.00e+01 0.00e+00 223

1 Sensitivity analysis based on LH-OAT (see Section 5.4.2).
2 Default values based on the study area information.
3 Insensitive parameters obtained from the LH-OAT analysis.

We set up SWAT-2005 with the modified SCS curve number for comput-
ing surface runoff, the Priestley-Taylor method for computing the evapotran-
spiration (ETP), and the Muskingum procedure for the channel routing (see
Neitsch et al., 2005). The AVSWAT-X GIS interface (see Di Luzio et al.,
2004) was used to prepare all the input files required by SWAT-2005. Infor-
mation on weather, topography, soil properties, and land use in the study area
was provided by the Confederación Hidrográfica del Ebro (CHE). Dominant
soils in the catchment are marlstones, argillaceous marlstones, and breccia,
whereas dominant land uses are forest (57.5%), pasture (39.0%), agriculture
(2.95%), rocks (0.4%) and urban areas (0.12%). Precipitation estimates were
obtained from interpolation of daily data in four rain gauges (P9175, P9176,
P9095, P9177U see Figure 15).

SWAT-2005 contains numerous parameters describing processes where
hydrology, water quality, and the soil-plant system interact. Table 4 shows
a subset of 22 parameters (potentially) relevant for hydrological simulations
only. These parameters are located in different files required for SWAT-2005
(see column Location in Table 4) and, thus, this tutorial illustrates how to
interface hydroPSO and a model code with multiple controlling files (see
Section 5.2). As explained later, only sensitive parameters were selected for
calibrating the hydrological model for the Ega headwater catchment.
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swat2005.exe
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Figure 16: Interaction of hydroPSO with SWAT-2005 and main I/O wrapper
functions defined.

5.2 Interfacing hydroPSO and SWAT-2005

The interaction between SWAT-2005 and hydroPSO is shown in Figure 16.
Here, SWAT-2005 is executed by swat2005.exe (or swat2005.out under
GNU/Linux), which reads several input files (e.g. *.mgt, *.gw, *.sol, *.hru,
*.bsn, and *.rte) containing the parameters to be calibrated. swat2005.exe
executes the SWAT-2005 model code and produces the *.rch file, which con-
tains simulated discharges for defined river reaches. River discharges simu-
lated by SWAT-2005 are then read by the hydroPSO function rch2zoo, which
transforms the time series of discharge values into a zoo R object (sim).
Subsequently, the hydroGOF R package (see http://cran.r-project.org/
web/packages/hydroGOF/) is used to calculate a Nash-Sutcliffe Efficiency
(NSE) (see Nash and Sutcliffe, 1970) as goodness-of-fit measure (Note that
loading the hydroGOF R package gives the user a full suite of goodness-of-
fit measures such as: root mean square error (rms), normalised rms (nrms),
Pearson correlation coefficient (r), coefficient of determination (R2), modified
NSE (mNSE), index of agreement (d), coefficient of persistence (cp), percent
bias (pbias), Kling-Gupta Efficiency (KGE) among others). NSE is used to
assess the quality of the current parameter set (particles’ positions) by hy-
droPSO. Then, hydroPSO updates the current particles’ positions (parameter
set) on the basis of the current NSE and the new updated parameter values
(best particles’ positions) are written into the corresponding files defined in
ParamFiles.txt.
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5.3 Definition of ParamFiles.txt and ParamRanges.txt

files

The interaction between hydroPSO and SWAT-2005 is defined through the
specification of, first, the names and location of the parameters to be cali-
brated and, second, the definition of meaningful parameter ranges. This in-
formation is provided by the (problem-specific) ASCII files ParamFiles.txt
and ParamRanges.txt, which must be contained in the ./PSO.in folder.

In general, if a sensitivity analysis is implemented for identifying (in)sensitive
parameters, the hydroPSO user will have to define two sets of interfacing
files, one for the sensitivity analysis (most likely including all parameters
considered) and other for the calibration stage (most likely including only
sensitive parameters). In the SWAT-2005 case study, ParamFiles-Sens.txt
and ParamRanges-Sens.txt are defined as the interfacing files used for the
sensitivity analysis, which correspond to the full set of hydrology-related pa-
rameters listed in Table 4, whereas ParamFiles.txt and ParamRanges.txt

are the interfacing files used during calibration.

ParamFiles-Sens.txt
ParameterNmbr ParameterName Filename Row.Number Col.Start Col.End DecimalPlaces

1 CN2 000010001.mgt 11 4 16 5

1 CN2 000020001.mgt 11 4 16 5

2 ESCO basins.bsn 13 4 16 3

3 SURLAG basins.bsn 20 4 16 3

4 RCHRG_DP 000010001.gw 9 1 16 7

4 RCHRG_DP 000020001.gw 9 1 16 7

5 GWQMN 000010001.gw 6 1 16 7

5 GWQMN 000020001.gw 6 1 16 7

6 GW_REVAP 000010001.gw 7 1 16 7

6 GW_REVAP 000020001.gw 7 1 16 7

7 REVAPMN 000010001.gw 8 1 16 7

7 REVAPMN 000020001.gw 8 1 16 7

8 GW_DELAY 000010001.gw 4 1 16 7

8 GW_DELAY 000020001.gw 4 1 16 7

9 ALPHA_BF 000010001.gw 5 1 16 7

9 ALPHA_BF 000020001.gw 5 1 16 7

10 SOL_K 000010001.sol 11 28 39 5

10 SOL_K 000010001.sol 11 40 51 5

10 SOL_K 000010001.sol 11 52 63 5

10 SOL_K 000020001.sol 11 28 39 5

10 SOL_K 000020001.sol 11 40 51 5

10 SOL_K 000020001.sol 11 52 63 5

11 SOL_AWC 000010001.sol 10 28 39 5

11 SOL_AWC 000010001.sol 10 40 51 5

11 SOL_AWC 000010001.sol 10 52 63 5

11 SOL_AWC 000020001.sol 10 28 39 5

11 SOL_AWC 000020001.sol 10 40 51 5

11 SOL_AWC 000020001.sol 10 52 63 5

12 CH_N2 000010000.rte 6 4 16 3

12 CH_N2 000020000.rte 6 4 16 3

13 CH_K2 000010000.rte 7 4 16 3

13 CH_K2 000020000.rte 7 4 16 3

14 OV_N 000010001.hru 5 4 16 3

14 OV_N 000020001.hru 5 4 16 3
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15 SFTMP basins.bsn 4 4 16 3

16 SMTMP basins.bsn 5 4 16 3

17 SMFMX basins.bsn 6 4 16 3

18 SMFMN basins.bsn 7 4 16 3

19 TIMP basins.bsn 8 4 16 3

20 EPCO basins.bsn 14 4 16 3

21 CANMX 000010001.hru 9 4 16 3

21 CANMX 000020001.hru 9 4 16 3

22 SOL_ALB 000010001.sol 17 28 39 5

22 SOL_ALB 000010001.sol 17 40 51 5

22 SOL_ALB 000010001.sol 17 52 63 5

22 SOL_ALB 000020001.sol 17 28 39 5

22 SOL_ALB 000020001.sol 17 40 51 5

22 SOL_ALB 000020001.sol 17 52 63 5

ParamRanges-Sens.txt
ParameterNmbr ParameterName MinValue MaxValue

1 CN2 40 95

2 ESCO 0.01 1

3 SURLAG 1 12

4 RCHRG_DP 0 1.0

5 GWQMN 0 5000

6 GW_REVAP 0 0.2

7 REVAPMN 1 500

8 GW_DELAY 1 100

9 ALPHA_BF 0.01 0.99

10 SOL_K 0.001 1000

11 SOL_AWC 0.01 0.35

12 CH_N2 0.016 0.150

13 CH_K2 0 200

14 OV_N 0.008 0.600

15 SFTMP -5 5

16 SMTMP -5 5

17 SMFMX 1.4 6.9

18 SMFMN 1.4 6.9

19 TIMP 0.01 1

20 EPCO 0.01 1

21 CANMX 0 10

22 SOL_ALB 0 0.1

5.4 Implementation Details and Results of the Cali-
bration

5.4.1 Configuring hydromod()

Before implementing an optimisation with hydroPSO, the user must configure
the hydromod() function. As explained before, hydromod links the model in-
puts, outputs, and executables with hydroPSO. Two of the most important
arguments of hydromod are the out.FUN and the gof.FUN functions. The
first one explicitly handles and interprets the outputs from the model code
to be calibrated. Here it is important to notice that hydroPSO does not
require that the model outputs be stored in plain text files since it
can take advantage of ca. 4000 contributed R packages to read several spa-
tial and spatio-temporal file formats as well as other foreign formats. This
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constitutes a real advantage compared to model-independent tools restricted
to read PEST-like (input/output) templates stored in plain text files. The
second function calculates a (user-defined) measure of model performance by
comparing observations against simulated equivalents. gof.FUN can be de-
fined on the basis of the hydroGOF R package or on the basis of a customised
R function.

Once arguments for hydromod() have been defined, the user should run
the model to be calibrated by simply calling the hydromod() function. This
will execute the model code only once and it will verify that model inputs,
outputs, executables, and assessment of model performance are being calcu-
lated correctly.

In the following section, arguments for hydromod() are defined using the
rch2zoo function from the SWAT2R R package for out.FUN, and the NSE

(Nash-Sutcliffe Efficiency) goodness-of-fit measure from the hydroGOF R
package.

5.4.2 Sensitivity Analysis

As first step, a sensitivity analysis is performed on the 22 parameters listed
in Table 4. The lhoat() hydroPSO function allows the user to rank relevant
parameters according to their impact on model predictions or performance
using the Latin Hypercube One-factor-At-a-Time (LH-OAT) method devel-
oped by van Griensven et al. (2006). LH-OAT works by taking M LH sam-
pling points (M strata for each parameter) and then varying by a fraction s
each LH sampling point D times, where D is the number of parameters (i.e.
problem dimensionality). For each LH sampling point a partial effect for each
parameter is calculated and a final effect (impact on model predictions) is
calculated by averaging these partial effects for each parameter. The method
is very efficient requiring a total of M(D+ 1) runs. Details of the sensitivity
analysis implemented for SWAT-2005 are as follows:

1. Nash-Sutcliffe Efficiency (NSE) is used as a goodness-of-fit measure
(hydroGOF R package).

2. Period for the analysis corresponds to 01-Jan-1962 to 31-Dec-1970 using
a daily time step.

3. The number of strata for the LH sampling was defined as M = 300,
whereas the fraction of variation was 10%, i.e. s = 0.1.

4. Observations used to assess the model performance are stored in the
auxiliary file SWAT_obs.txt, whereas the auxiliary file LHOAT-SWAT2005.R
implements the sensitivity analysis as follows:
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LHOAT-SWAT2005.R
###Loading required libraries

library(hydroPSO)

library(hydroGOF)

library(hydroTSM)

library(SWAT2R) # if not on CRAN, get it from \url{http://www.rforge.net/SWAT2R/}

###Definition of working directory: input, output and model files paths

model.drty <- "~/SWAT2005"

setwd(model.drty)

param.ranges <- paste(model.drty,"/PSO.in/ParamRanges-Sens.txt",sep="")

###Period of analysis (see "file.cio" SWAT file)

Sim.Ini="1962-01-01"

Sim.Fin="1970-12-31"

gof.Ini="1962-01-01"

gof.Fin="1970-12-31"

###Goodness-of-fit function, either customised or pre-defined from hydroGOF

gof.FUN <- "NSE"

gof.FUN.args <- list()

###Getting the OBSERVATIONS

q.obs <- read.zoo("SWAT_obs.txt")

###Arguments for the model to be assessed

model.FUN.args=list(

model.drty=model.drty,

param.files=paste(model.drty,"/PSO.in/ParamFiles-Sens.txt",sep=""),

exe.fname="./swat2005.out", # GNU/Linux

stderr=FALSE,

###Function for reading the simulated equivalents

out.FUN="rch2zoo",

out.FUN.args=list(

file="output.rch",

col.names="FLOW_OUTcms",

out.type="Q",

rchID=1,

Date.Ini=Sim.Ini,

Date.Fin=Sim.Fin,

tstep="daily"), ###END out.FUN.args

###Function assessing the simulated equivalents against the observations

gof.FUN=gof.FUN,

gof.FUN.args=gof.FUN.args

gof.Ini=gof.Ini,

gof.Fin=gof.Fin,

obs=q.obs,

) ###END model.FUN.args

###Main Latin-Hypercube One-factor-At-a-Time Sensitivity Analysis

lhoat(

fn="hydromod",

model.FUN="hydromod",

model.FUN.args=model.FUN.args,

control=list(

N=300,

f=0.1,

drty.out="LH_OAT",

param.ranges=param.ranges,

gof.name="GoF",

do.plots=FALSE,

write2disk=TRUE,
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verbose= TRUE) ###END control options

) ###END lhoat

5. This sensitivity analysis requires a total of 6900 iterations (M = 300
and D = 22). In LHOAT-SWAT2005.R we define the keyword NSE from
hydroGOF as goodness-of-fit measure as well as SWAT_obs.txt as the
file containing the daily discharge observations. Within the arguments
for the model code to be assessed, we must define the location of the
ParamFiles.txt and the name of the executable file (swat2005.out).
In addition, we specify the function for reading the simulated discharges
(out.FUN) as rch2zoo, whereas the assessment of each simulation is
done through gof.FUN="NSE". For the lhoat() function we first de-
fine the keyword hydromod, which indicates that an external model
code (i.e. not a pre-defined test function coded in hydroPSO) will be
analysed. Arguments N=300, f=0.1, and drty.out=LH_OAT are used
to define the number of strata, the fraction of variation for each pa-
rameter, and the name of the folder where results will be saved, respec-
tively. lhoat() produces the file LH_OAT-Ranking.txt, which contains
a ranking of parameters according to their relative importance.

LH_OAT-Ranking.txt
RankingNmbr ParameterName RelativeImportance

1 ALPHA_BF 5.707630e+02

2 CH_N2 2.238171e+02

3 CN2 1.874606e+02

4 SOL_K 1.433732e+02

5 SOL_AWC 1.298079e+02

6 CH_K2 9.871332e+01

7 ESCO 9.403977e+01

8 SURLAG 6.890757e+01

9 SFTMP 5.144755e+01

10 SMTMP 2.285713e+01

11 SMFMN 1.619080e+01

12 TIMP 6.051893e+00

13 SMFMX 3.735775e+00

14 OV_N 2.607991e+00

15 RCHRG_DP 4.295568e-01

16 GWQMN 3.301034e-01

17 GW_REVAP 1.705301e-01

18 GW_DELAY 6.303209e-02

19 SOL_ALB 1.192648e-02

20 REVAPMN 4.581639e-03

22 EPCO 0.000000e+00

22 CANMX 0.000000e+00

6. The ranking obtained from the sensitivity analysis is included in the
last column of Table 4. We see from this table that 9 parameters are
identified as sensitive using a NSE as goodness-of-fit measure for daily
discharge simulations in the period 01-Jan-1962 to 31-Dec-1970 (several
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trials showed that the tenth parameter, SMTMP, is relatively insensitive,
and for sake of clarity, we have excluded it from the subsequent anal-
ysis). In general, this ranking is in agreement with previous research
(see e.g. Holvoet et al., 2005; Muleta and Nicklow , 2005; van Liew et al.,
2005; van Griensven et al., 2006; Kannan et al., 2007; van Liew et al.,
2007), and this subset of parameters constitute the basis for the cali-
bration of the SWAT-2005 model.

The resulting files (ParamFiles.txt and ParamRanges.txt) used to in-
terface hydroPSO and SWAT-2005 in the calibration stage are as follows:

ParamFiles.txt
ParameterNmbr ParameterName Filename Row.Number Col.Start Col.End DecimalPlaces

1 CN2 000010001.mgt 11 4 16 5

1 CN2 000020001.mgt 11 4 16 5

2 ESCO basins.bsn 13 4 16 3

3 SURLAG basins.bsn 20 4 16 3

4 ALPHA_BF 000010001.gw 5 1 16 7

4 ALPHA_BF 000020001.gw 5 1 16 7

5 SOL_K 000010001.sol 11 28 39 5

5 SOL_K 000010001.sol 11 40 51 5

5 SOL_K 000010001.sol 11 52 63 5

5 SOL_K 000020001.sol 11 28 39 5

5 SOL_K 000020001.sol 11 40 51 5

5 SOL_K 000020001.sol 11 52 63 5

6 SOL_AWC 000010001.sol 10 28 39 5

6 SOL_AWC 000010001.sol 10 40 51 5

6 SOL_AWC 000010001.sol 10 52 63 5

6 SOL_AWC 000020001.sol 10 28 39 5

6 SOL_AWC 000020001.sol 10 40 51 5

6 SOL_AWC 000020001.sol 10 52 63 5

7 CH_N2 000010000.rte 6 4 16 3

7 CH_N2 000020000.rte 6 4 16 3

8 CH_K2 000010000.rte 7 4 16 3

8 CH_K2 000020000.rte 7 4 16 3

9 SFTMP basins.bsn 4 4 16 3

ParamRanges.txt
ParameterNmbr ParameterName MinValue MaxValue

1 CN2 40 95

2 ESCO 0.01 1

3 SURLAG 1 12

4 ALPHA_BF 0.01 0.99

5 SOL_K 0.001 1000

6 SOL_AWC 0.01 0.35

7 CH_N2 0.016 0.150

8 CH_K2 0 200

9 SFTMP -5 5

5.4.3 Calibration

After obtaining a ranking with the most sensitive parameters, the calibra-
tion of the river discharges for the EGA headwater catchment proceeded as
follows:
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1. Files interfacing hydroPSO and SWAT-2005 (i.e. ParamFiles.txt

and ParamRanges.txt) are stored in the ./PSO.in folder, within the
directory containing all the required files to run SWAT-2005, which for
this tutorial is ./SWAT2005.

2. Several auxiliary files (described below) are included in ./SWAT2005:

Auxiliary Files in SWAT2005
hydroPSO-SWAT2005.R -> Main R script to run hydroPSO

SWAT_obs.txt -> ASCII file with the discharge observations

As previously explained (see Section 5.4.2), the file LH_OAT-Ranking.txt
is saved in the folder ./SWAT2005/LH_OAT.

3. The setup for the calibration of the Ega headwater catchment is defined
in the hydroPSO-SWAT2005.R script. By default all the results from
hydroPSO are saved into the PSO.out folder, however, this can be
redefined by using the drty.out argument.

hydroPSO-SWAT2005.R
####################################################################################

## Example to interface SWAT-2005 with hydroPSO. This script allows hydroPSO to #

## take control of the execution of SWAT-2005 #

## #

## Part of the hydroPSO R package #

## http://www.rforge.net/hydroPSO/ http://cran.r-project.org/web/packages/hydroPSO #

## Copyright 2011-2012 Mauricio Zambrano-Bigiarini & Rodrigo Rojas #

## Distributed under GPL 2 or later #

## #

## Created by Mauricio Zambrano-Bigiarini and Rodrigo Rojas. 26-Oct-2011 #

## Last saved: 13-Oct-2012 #

####################################################################################

###Loading required libraries

library(hydroPSO)

library(hydroGOF)

library(hydroTSM)

library(SWAT2R) # if not on CRAN, get it from \url{http://www.rforge.net/SWAT2R/}

###Definition of working directory: input, output and model files paths

model.drty <- "~/SWAT2005"

setwd(model.drty)

###Getting the OBSERVATIONS

q.obs <- read.zoo("SWAT_obs.txt")

###Period of analysis

Sim.Ini="1962-01-01"

Sim.Fin="1970-12-31"

gof.Ini="1962-01-01"

gof.Fin="1970-12-31"

###Goodness-of-fit function, either customised or pre-defined from hydroGOF

gof.FUN <- "NSE"

gof.FUN.args <- list()
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###MAIN model function

model.FUN.args=list(

model.drty=model.drty,

param.files=paste(model.drty,"/PSO.in/ParamFiles.txt",sep=""),

exe.fname="./swat2005.out", # GNU/Linux

verbose=FALSE,

stderr=FALSE,

###Function for reading the simulated equivalents

out.FUN="rch2zoo", #function from the SWAT2R package

out.FUN.args=list(

file="output.rch",

col.names="FLOW_OUTcms",

out.type="Q",

rchID=1,

Date.Ini=Sim.Ini,

Date.Fin=Sim.Fin,

tstep="daily",

verbose=FALSE), ###END out.FUN.args

###Function for assessing the simulated equivalents against the observations

gof.FUN=gof.FUN,

gof.FUN.args=gof.FUN.args,

gof.Ini=gof.Ini,

gof.Fin=gof.Fin,

obs=q.obs,

###OPTIONAL. For plotting

do.png=FALSE

) ###END model.FUN.args

###MAIN PSO ALGORITHM

###For hydroPSO fine-tuning parameters, see Zambrano-Bigiarini and Rojas,2012

set.seed(100)

hydroPSO(

fn="hydromod",

method="spso2011",

model.FUN="hydromod",

model.FUN.args=model.FUN.args,

control=list(

param.ranges="ParamRanges-09params-sub090.txt",

normalise=TRUE,

MinMax="max",

npart=40,

maxit=1000,

reltol=1E-30,

Xini.type="lhs",

Vini.type="lhs2011",

c1=2.05,

c2=2.05,

use.IW=FALSE,

use.CF=TRUE,

use.TVlambda=TRUE,TVlambda.type="linear",TVlambda.rng=c(1.0,0.5),TVlambda.exp=

1,

topology="random", K=11,

boundary.wall="absorbing2011",

write2disk=TRUE,

REPORT=5,

verbose=TRUE

) ###END control options

) ###END MAIN hydroPSO ALGORITHM
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4. In the hydroPSO-SWAT2005.R script we first load all the required li-
braries, setup the working directory, and define the simulation period
as well as the period for calculating the goodness-of-fit measure (these
two could be different depending on the nature of the application). To
assess the performance of each particle in hydroPSO we use the Nash-
Sutcliffe Efficiency (NSE) implemented in the hydroGOF package as
goodness-of-fit measure. Discharge observations used to assess the cor-
responding simulated equivalents are read as a zoo object in R (to take
advantage of time attributes) from the SWAT_obs.txt ASCII file. Then,
we define all arguments related to the main model code to be calibrated.
Note that these arguments are identical as for the sensitivity analysis
(LHOAT-SWAT2005.R) and, so, they will not be repeated here. For the
main hydroPSO algorithm, the keyword hydromod must be used for the
argument fn when a function different from a predefined test function
is calibrated. This will indicate hydroPSO to expect for external files
containing the model executable(s), input(s), an output(s) files. For
this example, we use the spso2011 (default) algorithm to maximise
(MinMax="max") the NSE calculated by hydroGOF (gof.FUN="NSE").
Parameters values are normalised to the [0,1] range during the optimi-
sation (normalise=TRUE) as recommended by Clerc (2012) when the
search space is not a hypercube. A swarm of 40 particles (npart=40)
considering 1000 iterations (maxit=1000) for the algorithm is defined
with a relative tolerance (reltol) equal to 1E-30. Particle positions
are initialized following a LHS approach, whereas velocities are initial-
ized following the SPSO2011. A constant value for the cognitive (c1)
and social (c2) coefficients equal to 2.05 is used. In addition, we im-
prove on the definition of the factor clamping the velocities (lambda) by
using a linear variation between [1.0,0.5]. Particles interact following
the random topology with 11 informants. Finally, we employed the ab-
sorbing boundary condition. Results are saved by default in the folder
./PSO.out.

5. Plotting the results (Figures 17 to 28). Using the plot_results()

function results are saved directly to the folder ./PSO.out/pngs:

> plot_results(do.png=TRUE)

Although it is not the aim of this tutorial to provide an extensive analy-
sis of the hydrological calibration for the Ega headwater catchment, we
briefly discuss the results obtained from hydroPSO. Figure 17 shows
the evolution of NSE as a function of the iteration number. We see
an initial exploration phase (up to ca. iter=100) that stabilises after
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iteration 200 around a value of NSE=0.777. At the same time, the Nor-
malised Swarm Radius indicates a clear convergence to the attraction
zone around this optimum. Although not shown here, several trials
(including different number of iterations and particles for the swarm)
indicate that this solution is most likely the global optimum for the
calibration.

A dotty-plot for the different (sensitive) parameters listed in Table 4
is shown in Figure 18. From this figure we see a good identification
for all parameters. Figure 19 complements the previous one by show-
ing a 2-Dimensional projection of the goodness-of-fit surface response
(NSE) for different parameter pairs. Figure 20, in turn, summarises
the interaction among all (sensitive) parameters listed in Table 4. Here
a clear correlation between the NSE and CH N2, CH K2 and CN 2
is observed, whereas a statistically significant cross-correlation is ob-
served between CH N2, SFTMP, CH K2 and SOL K. Empirical Cu-
mulative Distribution Functions (ECDFs) (Figure 21) and histograms
(Figure 22) for the parameters show a good specification with reduced
uncertainty around the median and some for the extreme quantiles.
Figures 23, 24, and 25 provide, in turn, useful information to assess the
performance and convergence of the NSE, parameters, and velocities
per iteration number. By analysing these figures we conclude that the
hydroPSO package converged to a suitable attraction zone.

Figure 26 provides the daily time-series summarizing the calibration
together with a series of performance indicators. In general, we see
an underestimation of recession and peak-flows (PBIAS=-2.6%) with
a good agreement of average flows (MAE=4.67) and a final optimised
Nash-Sutcliffe Efficiency of 0.78. At the same time, Figure 27 shows
a scatter plot of simulated versus observed daily discharges. Finally,
Figure 28 shows different user-defined quantiles (5, 50 and 95) including
an estimation of the percentage bias for the specified quantiles. In this
figure we clearly see the relevant underestimation of low-flows obtained
from this exercise (Bias=-57.3% for the Q5).
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6 Calibration of a Groundwater Flow Model

Using hydroPSO

6.1 Groundwater System and Conceptualization

The model to be calibrated is termed “M2” and is similar to the model im-
plemented in Rojas et al. (2010). The groundwater system is described by
an unconfined aquifer which receives lateral groundwater recharges at the
eastern boundary and over all domain through deep fissures in basement
rocks. The system exchanges groundwater with contiguous aquifers at the
western and southern boundaries, whereas at the northern boundary it shows
a groundwater divide. Main outputs of groundwater from the system corre-
sponds to high transpiration rates from forested areas and high evaporation
rates from “playas”. The groundwater system is assumed to be under steady-
state conditions. An schematic representation of the system is shown in
Figure 29.

This groundwater system is conceptualised as a one-layer aquifer, with
the northern and southern interaction with external forcings expressed as
constant-head boundaries using the BAS6 package of MF2005. Recharge
mechanisms are expressed by lateral constant flux and spatially-distributed
recharge rates using the WEL and RCH packages of MF2005, respectively.
We consider 22 hydraulic conductivity zones obtained from Rojas and Das-
sargues (2007) implemented in the LPF package, one transpiration zone de-
fined as negative rates using the RCH package and one evaporation zone
implemented in the EVT package. In total, 30 parameters are considered for
the calibration of model M2. The definition of parameters as well as their
feasible ranges to implement hydroPSO are shown in Table 5. In addition,
we consider 42 observation wells (evenly) distributed in the modelled domain
for calibration purposes.

Table 5: Parameters used to calibrate model M2 with the hydroPSO package.
Parameter Range

Min Max

Recharge (Lateral fluxes) [m3 d−1] RECH 0 345600
Recharge from basement rocks [m3 d−1] RECH BAS 0 172800
Transpiration forested areas [m3 d−1] TRANSP 0 172800
Discharge to eastern aquifers [m3 d−1] NORIA 0 86400
Evaporation rate [m d−1] EVTR 0 0.01
Extinction depth [m] EXTD 0 20
Elevation constant head north [m] CH N 1075 1120
Elevation constant head south [m] CH S 875 920
Hydraulic conductivity for 22 zones [m d−1] K 0 100

69



Constant head north (CH_N)

Constant head south (CH_S)

Lateralgroundw
aterinflow

s(RECH)

Lateralgroundw
ateroutflow

s(N
O
RIA)

K1

K2

K3

K4

K5

[

[

[

[

[

[

OW‐5

OW‐2

Evaporation
Zone 

(EVTR, EXTD)

OW‐6

OW‐3

OW‐4
Transpiration 

Zone
(TRANSP)

Recharge over 
all domain
(RECH_BAS)

K6

K7

K8

K9K10

K11

OW‐1

Figure 29: Groundwater system conceptualization for model“M2”. Note that
M2 is set up with 22 hydraulic conductivity zones and 42 observation wells.

6.2 Interfacing hydroPSO and MF2005 and ZB

The interaction between hydroPSO and M2 (MF2005/ZB) is depicted in Fig-
ure 30. run me.bat is a simple batch script executing programmes preproc,
mf2005 and zonebud_hydroPSO sequentially. preproc is a simple read/write
FORTRAN code reading the pre param.txt file for M2, which is an ASCII file
containing updated parameter values produced by hydroPSO after each itera-
tion. preproc is problem-specific and copies the (updated) parameter values
in the files M2.BA6, M2.EVT, M2.LPF, M2.RCH and M2.WEL, which are
the files containing the parameters for M2. Therefore, for a different ground-
water model possibly having different conductivity zones, geometry, bound-
ary conditions, etc., it will be necessary to adapt preproc to that particular
problem calibration. Special care must be taken in reading parameters as
reported in the pre param.txt file, whose order is defined by the user through
the file ParamRanges.txt. Subsequently, mf2005 executes MF2005 for the
“Name File”, M2.NAM. MF2005 produces a summary and the main results
of the groundwater flow model (heads and global flow components) in files
M2.LST, M2.BUD and M2.HED. Finally, zonebud_hydroPSO calculates the
balance for each specific “budget” zone defined in the M2.ZON file and saves
the results into the M2.BAL file. zonebud_hydroPSO is a modified version of
the original ZB code where keyboard input is skipped by using pre-defined
(hard-coded) default options.
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mf2005.exe

*.BA6 ‐ *.EVT ‐ *.LPF 
‐ *.RCH ‐*.WEL

*.LST ‐ *.HED
*.BUD

hydroPSO

read.hsim.R

pre_param.txt

zonebud_hydroPSO.exe

preproc.exe

read.wbal.R*.BAL

run_me.bat

Figure 30: Interaction of hydroPSO with MF2005/ZB (M2) and main I/O
wrapper functions defined.

6.3 Definition of ParamFiles.txt and ParamRanges.txt

files

Two basic pieces of information are required to interface M2 and hydroPSO.
First, the names and location of the (multiple) parameters to be calibrated,
together with specific location and decimal positions. Second, feasible and
physically meaningful parameter ranges. This information is entered in two
text files, ParamFiles.txt and ParamRanges.txt, which must be stored in
the subdirectory ./PSO.in. Note that care must be taken in numbering and
naming the parameters as they require to be consistent in both files.

ParamFiles.txt
ParameterNmbr ParameterName Filename Row.Number Col.Start Col.End DecimalPlaces

1 HK_1 pre_param.txt 2 1 20 3

2 HK_2 pre_param.txt 3 1 20 3

3 HK_3 pre_param.txt 4 1 20 3

4 HK_4 pre_param.txt 5 1 20 3

5 HK_5 pre_param.txt 6 1 20 3

6 HK_6 pre_param.txt 7 1 20 3

7 HK_7 pre_param.txt 8 1 20 3

8 HK_8 pre_param.txt 9 1 20 3

9 HK_9 pre_param.txt 10 1 20 3

10 HK_10 pre_param.txt 11 1 20 3

11 HK_11 pre_param.txt 12 1 20 3

12 HK_12 pre_param.txt 13 1 20 3

13 HK_13 pre_param.txt 14 1 20 3

14 HK_14 pre_param.txt 15 1 20 3
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15 HK_15 pre_param.txt 16 1 20 3

16 HK_16 pre_param.txt 17 1 20 3

17 HK_17 pre_param.txt 18 1 20 3

18 HK_18 pre_param.txt 19 1 20 3

19 HK_19 pre_param.txt 20 1 20 3

20 HK_20 pre_param.txt 21 1 20 3

21 HK_21 pre_param.txt 22 1 20 3

22 HK_22 pre_param.txt 23 1 20 3

23 R_TRANSP pre_param.txt 24 1 20 4

24 R_BSMNT pre_param.txt 25 1 20 4

25 R_CHN pre_param.txt 26 1 20 4

26 R_CHS pre_param.txt 27 1 20 4

27 R_EVTR pre_param.txt 28 1 20 8

28 R_EXTD pre_param.txt 29 1 20 4

29 R_RECH pre_param.txt 30 1 20 4

30 R_NOR pre_param.txt 31 1 20 4

ParamRanges.txt
ParameterNmbr ParameterName MinValue MaxValue

1 HK_1 0 100

2 HK_2 0 100

3 HK_3 0 100

4 HK_4 0 100

5 HK_5 0 100

6 HK_6 0 100

7 HK_7 0 100

8 HK_8 0 100

9 HK_9 0 100

10 HK_10 0 100

11 HK_11 0 100

12 HK_12 0 100

13 HK_13 0 100

14 HK_14 0 100

15 HK_15 0 100

16 HK_16 0 100

17 HK_17 0 100

18 HK_18 0 100

19 HK_19 0 100

20 HK_20 0 100

21 HK_21 0 100

22 HK_22 0 100

23 R_TRANSP 0 172800

24 R_BSMNT 0 172800

25 R_CHN 1075 1120

26 R_CHS 875 920

27 R_EVTR 0 0.01

28 R_EXTD 0 20

29 R_RECH 0 345600

30 R_NOR 0 86400

6.4 Basic I/O Wrapper Functions

For a successful calibration a number of observations are required for com-
parison against the simulated equivalents and, as such, they constitute the
basis for the calculation of the objective function. For MF2005, we can define
observations for a series of flow processes, e.g. specified-head flows, drains,
rivers, groundwater heads, streams, etc., see Hill et al. (2000). For model
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M2, however, we employ 42 groundwater head observations contained in the
M2.HOB file, which are read through a simple R function (read.hobs.R). As
explained later, read.hobs.R is called only once and is not necessarily re-
quired. We include it to illustrate how additional observations for other flow
components can be read, stored in an R object and used for calculating the
objective function.

read.hobs.R
read.hobs <- function(fname="M2.HOB",ncol=9,skip=2) {

x <- read.table(file=fname,skip=skip,header=FALSE)

x <- x[,ncol]

return(x) }

The main I/O function to interface hydroPSO and M2 (MF2005/ZB)
is read.hsim.R. This function reads simulated groundwater heads, global
groundwater balance components and residuals, and calculates a customised
goodness-of-fit measure as objective function. For this case, we read both
simulated heads and calculated residuals from the M2.LST file. Alterna-
tively, we could read simulated groundwater heads from the M2.HED file
(for specific well locations), however, this does not allow us to read in one-
step the global groundwater balance components available in the M2.LST
file. By directly reading the residuals as reported in the M2.LST, we avoid
having to read the groundwater head observations contained in the M2.HOB
file.

At the same time, read.hsim.R calculates a Gaussian likelihood measure
(L) using,

L = (2π)−N/2 |C|−1/2 exp

(
−1

2
(hsim − hobs)T C−1 (hsim − hobs)

)
(13)

where C is the covariance matrix of the observed system variables, N is the
number of observations, and the likelihood for the corresponding hydroPSO
iteration (i.e. parameter set) is obtained using a product inference function
(see, e.g., Rojas et al., 2008). Note that alternative formulations can be im-
plemented as objective functions, however, the current version of hydroPSO
works only with single-objective functions.

Finally, read.hsim.R writes the calculated likelihood, which is processed
by hydroPSO to assess the quality of the particles’ positions, and the global
groundwater balance components to simple ASCII files, lik_gauss.txt and
WBAL.txt, respectively.

read.hsim.R
read.hsim <- function(fname="M2.LST",nobs=42) {

sim <- rep(NA,nobs)
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lik <- NA

out <- rep(NA,7)

L <- 0

x <- readLines(fname)

stg <- " HEAD AND DRAWDOWN OBSERVATIONS"

n <- which(x==stg)

L <- length(n)

if (L > 0) {

suppressWarnings(tmp <- read.table(file=fname,skip=n+3,header=FALSE,nrows=nobs,colClasses

=c("NULL","NULL","numeric","numeric"),fill=TRUE,na.strings="OMITTED"))

sim <- as.numeric(tmp[,1])

res1 <- as.numeric(tmp[,2])

na.index <- which(is.na(sim))

if ((length(sim)==nobs) & (length(na.index)==0)) {

# Gaussian likelihood (stdev = 10 same for MCMC analysis Rojas et al. 2010)

gauss1 <- 2*pi

gauss2 <- 10*sqrt(gauss1)

gauss3 <- 1/gauss2

gauss4 <- 2*(10^2)

res2 <- res1^2

lik1 <- gauss3*exp(-(res2/gauss4))

lik2 <- prod(lik1)

lik <- lik2^(1/nobs) #likelihood using "product" inference function (Rojas et al. 2010)

system2("zonbud_hydroPSO.exe")

stg <- " VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 1 IN STRESS PERIOD 1"

n <- which(x==stg)

L <- length(n)

if (L > 0) {

suppressWarnings(tmp <- read.table(file=fname,skip=n+11,header=FALSE,nrows=9,fill=TRU

E,stringsAsFactors=FALSE))

rech <-as.numeric(tmp[1,3])

evap <-as.numeric(tmp[8,3])

transp <-as.numeric(tmp[9,3])

out1 <- c(rech,evap,transp )

names(out1) <- c("rech","evap","transp")

out2 <- read.wbal("M2.BAL")

out <- c(out1, out2)

}

} else {

sim <- rep(NA,nobs)

lik <- NA

out <- rep(NA,7)

}

}

# Adding the results of the water balance to "WBAL.txt"

wb.Text.file <- file("WBAL.txt","a")

writeLines(as.character(out),wb.Text.file,sep=" ")

writeLines("",wb.Text.file)

close(wb.Text.file)

write(lik,"lik_gauss.txt")

return(sim) }

In principle, using read.hsim.R and correctly defining the ParamFiles.txt
file, should suffice for interfacing hydroPSO and M2 (MF2005/ZB). However,
to consider alternative “goodness-of-fit” measures and/or observations might
require using read.hobs.R.
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In addition, for this tutorial we develop an R script to read the results from
the ZB program. read.wbal.R reads the results for 4 “budget” zones defined
in the M2.ZON file, and saved in the M2.BAL file by zonebud_hydroPSO.
These flows are recharge due to deep fissures in basement rocks (rechdeep),
outflows at the aquifer’s southern cross-section (cgordo), (point) southern-
most incoming lateral flux (chaca), and outflows to western aquifers (noria).
These results are stored in an R object (out), which is saved in the WBAL.txt
file by the read.hsim.R script.

read.wbal.R
read.wbal <- function(fname="M2.BAL") {

if (length(readLines(fname)) > 34 ) {

suppressWarnings(rechdeep <- as.numeric(read.table(file=fname,skip=34,header=FALSE,nrows=

1,colClasses=c("NULL","NULL","numeric"),fill=TRUE)))

suppressWarnings(cgordo <- as.numeric(read.table(file=fname,skip=42,header=FALSE,nrows=1,

colClasses=c("NULL","NULL","NULL","NULL","NULL","numeric"),fill=TRUE)))

noria <- NA

chaca <- NA

x <- readLines(fname)

stg <- " Flow Budget for Zone 5 at Time Step 1 of Stress Period 1"

n <- which(x==stg)

L <- length(n)

if (L > 0) noria <- read.table(file=fname,skip=n+18,header=FALSE,nrows=1,colClasses=c("NU

LL","NULL","numeric"),fill=TRUE)

stg <- " Flow Budget for Zone 16 at Time Step 1 of Stress Period 1"

n <- which(x==stg)

L <- length(n)

if (L > 0) chaca <- read.table(file=fname,skip=n+8,header=FALSE,nrows=1,colClasses=c("NUL

L","NULL","numeric"),fill=TRUE)

out <- c(rechdeep,noria,cgordo,chaca)

} else out <- rep(NA,4)

names(out) <- c("rechdeep","noria","cgordo","chaca")

return(out) }

6.5 Implementation Details and Results of the Cali-
bration

1. Once ParamFiles.txt and ParamRanges.txt files have been created,
they need to be stored in the ./PSO.in directory within the folder
containing the main MF2005 model files, which for this tutorial corre-
sponds to ./MF2005.

2. The arguments for the hydromod() function have been defined using
read.hsim script for the function out.FUN, whereas read.lik has been
used as argument for the gof.FUN function.

3. Several auxiliary files (described below) are included in ./MF2005:
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Auxiliary Files in MF2005
hydroPSO-MF2005.R -> Main R script to run hydroPSO

lik_gauss.txt -> ASCII file containing the likelihood value

pre_param.txt -> ASCII file containing the updated parameters

TOY_LPF_M2.txt -> Template for the LPF package used by preproc

TOY_RCH_M2.txt -> Template for the RCH package used by preproc

4. The setup for the problem as well as all the options implemented to cali-
brate the groundwater flow model are defined in the hydroPSO-MF2005.R
script. By default all results from hydroPSO are saved into the PSO.out
folder, however, this can be redefined by using the drty.out argument.

hydroPSO-MF2005.R
####################################################################################

## Example to interface MODFLOW-2005 and ZONE BUDGET with hydroPSO. This script #

## allows hydroPSO to take control of the execution of MODFLOW-2005 and ZONEBUDGET #

## through the definition of a batch file (run_me.bat) and a series of simple I/O #

## R scripts #

## #

## Part of the hydroPSO R package #

## http://www.rforge.net/hydroPSO/ http://cran.r-project.org/web/packages/hydroPSO #

## Copyright 2011-2012 Mauricio Zambrano-Bigiarini & Rodrigo Rojas #

## Distributed under GPL 2 or later #

## #

## Created by Mauricio Zambrano-Bigiarini and Rodrigo Rojas. 26-Oct-2011 #

## Last saved: 25-Nov-2012 #

####################################################################################

###Loading required libraries

library(hydroPSO)

library(hydroTSM)

library(hydroGOF)

###Definition of working directory: input, output and model files paths

model.drty <- "~/MF2005"

setwd(model.drty )

###Customised I/O functions (R scripts) to interface MF2005 with hydroPSO

source("read.hobs.R")

source("read.hsim.R")

source("read.wbal.R")

source("read.lik.R")

###Goodness-of-fit, either customised or pre-defined from hydroGOF

gof.FUN <- "read.lik"

gof.FUN.args <- list()

###Getting the OBSERVATIONS (not strictly necessary for this example)

obs.fname <- "M2.HOB"

obs.fname <- paste(file.path(model.drty),"/",obs.fname,sep="")

obs <- read.hobs(fname=obs.fname)

###MAIN model function

model.FUN="hydromod",

model.FUN.args=list(

model.drty=model.drty,

param.files=paste(model.drty,"/PSO.in/ParamFiles.txt",sep=""),
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exe.fname="run_me.bat",

###Function for reading the simulated equivalents

out.FUN="read.hsim",

out.FUN.args=list(

fname="M2.LST",

nobs=42),

###Function assessing the simulated equivalents against the observations

gof.FUN=gof.FUN,

gof.FUN.args=gof.FUN.args,

obs=obs

) ###END model.FUN.args

###MAIN PSO ALGORITHM

###For hydroPSO fine-tuning parameters, see Zambrano-Bigiarini and Rojas,2012

#set.seed(1111)

hydroPSO(

fn="hydromod",

model.FUN.args=model.FUN.args,

method="spso2011",

control=list(

MinMax="max",

npart=70,

maxit=3000,

reltol=1e-30,

c1=2.05,

c2=2.05,

use.IW=FALSE,

use.CF=TRUE,

use.TVlambda=TRUE,TVlambda.type="linear",TVlambda.rng=c(1.0,0.5),TVlambda.exp=1,

topology="random", k=11,

drty.out="SPSO2011_i31.out",

boundary.wall="reflecting",

normalise=TRUE,

REPORT=50

) ###END control options

) ###END MAIN hydroPSO ALGORITHM

In the hydroPSO-MF2005.R script we use read.hobs.R to read ground-
water head observations from M2.HOB, read.hsim.R to read simu-
lated equivalents and calculate a likelihood measure, read.wbal.R to
read groundwater balance components defined in the M2.ZON file, and
read.lik.R to read the one-line ASCII file containing the likelihood
measure. When a model code other than pre-defined test functions
coded in hydroPSO is used, the fn argument must take the value
hydromod. The latter will indicate hydroPSO to expect for external files
containing the model executable(s), input(s) and output files. We use
the Standard PSO 2011 algorithm (method="spso2011") to maximise
(MinMax="max") the likelihood calculated by read.hsim.R. For that
purpose, we employ a swarm of 70 particles (npart=70) and a maximum
number of iterations equals to 3000 (maxit=3000). A constant cogni-
tion and social coefficients (2.05) and a linear (TVlambda.type="linear")
time-variant lambda factor (velocity clamping factor) (use.TVlambda=TRUE)
between [1.0,0.5] are used for fine-tuning the algorithm. A random
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topology with 11 informants and a reflecting boundary condition are
implemented. All parameter values are normalise in the range [0;1] be-
fore optimisation. As model arguments we define run_me.bat as the
main code running the (sequence of) model(s) together with the main
model outputs (out.FUN="read.hsim") and the likelihood of that par-
ticular parameter set (gof.FUN="read.lik"). Finally, we save results
in folder SPSO2011_i31.out.

5. Here, we illustrate the use of individual hydroPSO “reading” and “plot-
ting” functions to obtain customised graphs. First, we set up the cor-
responding directory with the results of the calibration:

> setwd("~/MF2005/SPSO2011_i31.out")

6. Plotting the evolution of the global optimum:

> read_convergence(do.png=TRUE)

Figure 31 shows the evolution of the Gaussian likelihood (customised
Goodness-of-Fit measure) as a function of the number of iterations. In
general, we see that there is an initial exploratory phase of ca. 500
iterations where significant improvements in the global optimum are
found. After iteration nr. 1000, the global optimum stabilises and the
NSR seems to converge towards an attraction zone.

7. Plotting the evolution of the 30 parameters. First, we read the file
Particles.txt and then we call function plot_ParamsPerIter for
plotting:

> parts <- read_params(file="Particles.txt",param.cols=

+ 4:33,plot=FALSE)

> plot_ParamsPerIter(parts[["params"]])

Figure 32 shows the result from the previous command lines. In this
figure we see the evolution of the parameters of M2 as a function of
the number of model evaluations (i.e. 70 particles × 3000 iterations).
We see that several parameters show a weak convergence to stable
values (e.g. HK 1, HK 5, HK 10-15, R CHN, R TRANSP, R EVTR,
R EXTD), indicating a rather insensitive behaviour. On the contrary,
other parameters show a clear zone of attraction (e.g. HK 20, R CHS,
R NOR). On the basis of previous runs, we have verified that the use
of the normalise=TRUE option for the parameters helps improving the
convergence of the parameter values as well as the velocities of the
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particles. However, caution must be considered in the case a sensitiv-
ity analysis is not performed, as the use of normalise could give the
impression of stable convergence for “insensitive” parameters.

8. From the previous item it is clear that not all parameters are sensi-
tive. So, here we plot a sub-set of parameters using the options of the
plot_results() hydroPSO function:

> plot_results(drty.out=getwd(),MinMax="max",do.png=TRUE,

+ param.names=c("HK_2","R_CHS","R_NOR","HK_19",

+ "HK_16","R_RECH","R_BSMNT","R_CHN","R_TRANSP",

+ "R_EVTR","R_EXTD","HK_1"))

This command line will produce several figures summarizing the re-
sults of the calibration for M2 (see, e.g., Section 5.4.3). Figure 33
shows dotty-plots for the subset of parameters identified in Figure 32.
Here, we see clear zones of attraction for some parameters (e.g. HK 2,
R CHS, and R RECH), whereas others show slightly flat (and non-
symmetric) likelihood response surfaces. Figure 34, in turn, shows
(projected) 2D dotty plots among parameters highlighting non-linear
interactions.

Figure 35 shows the ECDs for the sub-set of parameters of M2, where
the most likely parameter value is highlighted. Finally, Figure 36 shows
a good correspondence between the best simulated and the observed
groundwater heads.

9. At the same time, it is possible to analyse the results defining a “be-
havioural” threshold for the full set of simulated parameters. Here, we
select all simulations with a Gaussian Likelihood greater than 3.8×10−2:

> plot_results(drty.out=getwd(),MinMax="max",do.png=TRUE,

+ param.names=c("HK_2","R_CHS","R_NOR","HK_19",

+ "HK_16","R_RECH","R_BSMNT","R_CHN","R_TRANSP",

+ "R_EVTR","R_EXTD","HK_1"),beh.thr=3.8e-2)

Figures 37 and 38 show the full ECDFs for the simulated groundwa-
ter heads at 42 observation wells, highlighting the groundwater head
observations and the percentage bias for the quantile 50. Figure 39
show the resulting plots for the (projected) 2D interaction among pa-
rameters, where a clearer picture of the complex interactions for the
zone of attraction can be seen for several parameters (e.g. R RECH
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vs. R NOR and R RECH vs. HK 2). At the same time, Figure 40
shows the resulting ECDFs for a behavioural threshold of 3.8×10−2.
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7 Interfacing hydroPSO and PEST:

hydroPSO2pest and pest2hydroPSO Functions

Parameter ESTimation (PEST) (Doherty , 2010) is probably amongst one
of the most used (gradient-based) calibration software packages nowadays.
PEST is a calibration tool applicable to any model code reading and writ-
ing ASCII files, which can be applied in estimation/prediction/regularization
modes, can be used to perform sensitivity and uncertainty analyses, and pro-
vides the user with numerous statistics for the assessment of results. Its use
is particularly relevant in groundwater-related sciences, with an increasing
user community outside this domain (see, e.g., http://www.pesthomepage.
org/).

hydroPSO includes two functions allowing to interface hydroPSO with
PEST, namely, hydroPSO2pest and pest2hydroPSO.

1. Function hydroPSO2pest will convert hydroPSO files (ParamRanges.txt,
ParamFiles.txt, and hydroPSO-script.R) into the basic files used
to perform a PEST calibration (i.e. *.pst, *.ins, and *.tpl). Here,
we illustrate how hydroPSO2pest is called for the SWAT-2005 case
study assuming that a successful optimisation with hydroPSO has been
achieved. We define as working directory the folder where all the files
for applying SWAT-2005 and hydroPSO are located:

> getwd()

> setwd(dirname(getwd()))

> setwd("SWAT2005")

2. Obtaining information about the arguments required by the hydroPSO2pest
function:

> ?hydroPSO2pest

3. If located in the correct working directory, the user only needs to
specify the name(s) of the executable file(s) used in the optimisation
through the exe.fname argument, which in our case is swat2005.exe

(or swat2005.out in GNU/LINUX). hydroPSO2pest will search the
remaining arguments in the default directories automatically written
by hydroPSO, i.e. /PSO.in and /PSO.out.

> hydroPSO2pest(exe.fname="swat2005.exe")
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4. hydroPSO2pest will create the template files (*.tpl), a basic instruction
file (*.ins) to be completed by the user, and the controlling file (*.pst).
We must notice that these templates must be verified/modified by the
user for a successful PEST application, given the fact that PEST uses
“token-based” instructions for reading model inputs and outputs.

5. Function pest2hydroPSO will convert PEST files (*.pst, *.ins, and
*.tpl) into the basic files used to perform a hydroPSO optimisation
(i.e. ParamRanges.txt, ParamFiles.txt, and hydroPSO-Rscript.R).
Here, we illustrate how this function is called for the SWAT-2005 case
study assuming that a successful calibration with PEST has been achieved.
We keep the working directory where all the files for applying SWAT-
2005 and PEST are located. To obtain information about the argu-
ments required by pest2hydroPSO type:

> ?pest2hydroPSO

6. If located in the right directory, the user only needs to define the name
of the controlling file for the PEST calibration (in our example this
is called SWAT2005_EGA.pst). Then, pest2hydroPSO will create two
folders, namely, /PSO.in and /Rscripts, where the files required by
hydroPSO will be saved (to avoid overwriting of the original hydroPSO
files we define a new output directory drty.out="pest2hydroPSO.in"):

> pest2hydroPSO(pst.fname="SWAT2005_EGA.pst",

+ drty.out="pest2hydroPSO.in")

7. ParamRanges.txt and ParamFiles.txt files will be saved in drty.out,
whereas hydroPSO-Rscript.R will be saved in /Rscripts. hydroPSO-Rscript.R
is a basic R script that must be modified by the user to define a
Goodness-of-Fit measure (gof.FUN), period of analysis (Sim.Ini, Sim.Fin,
Gof.Ini, Gof.Fin), and a function to read the model outputs (out.FUN).
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8 Parallel Configuration

From version 0.3-0 hydroPSO can be executed taking advantage of multi-core
machines or clusters by defining only three arguments: parallel, par.nnodes,
and par.pkgs.

parallel indicates how to parallelise hydroPSO, strictly speaking only
the evaluation of the objective function fn is parallelised. Available options
are:

1. multicore: parallel computations for machines with multiple cores or
CPUs. The evaluation of the objective function fn is done with the
mclapply function of the multicore R package. It requires POSIX-
compliant OS (essentially anything but Windows).

2. parallel: parallel computations for network clusters or machines with
multiple cores or CPUs. A ’FORK’ cluster is created with the make-

ForkCluster function. The evaluation of the objective function fn is
done by using with the clusterApply function of the parallel R pack-
age.

3. parallelWin: parallel computations for network clusters or machines
with multiple cores or CPUs (this is the only available option for Win-
dows machines). A ’PSOCK’ cluster is created with the makeCluster

function. The evaluation of the objective function fn is done with the
clusterApply function of theparallel R package.

par.nnodes indicates the number of cores/CPUs to be used in the local
multi-core machine, or the number of nodes to be used in the network cluster.
By default par.nnodes is set to the number of cores detected by the function
detectCores() obtained from the multicore or parallel R packages.

Finally, par.pkgs (used only when parallel==’parallelWin’) is a list
of package names that need to be loaded on each node in order to be used
by the objective function fn.
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9 Closing Remarks

1. This tutorial aimed at providing a general overview of the capabilities of
the hydroPSO R package. In particular, we illustrated how to optimise
commonly used test functions and how to calibrate two model codes
commonly used in hydrology-related applications, namely, SWAT-2005
and MODFLOW-2005. Given the flexibility of hydroPSO, however, we
believe this calibration/optimisation engine can be applied to a wider
range of environmental models requiring some form of parameter esti-
mation.

2. The version of hydroPSO used in this tutorial takes advantage of multi-
core machines or network clusters to alleviate the computational bur-
den.

3. In hydroPSO we consider only single-objective functions for optimisa-
tion. We hope in the next future to include multi-objective functional-
ities to the main algorithm.

4. hydroPSO has been validated against standard global optimisation soft-
ware such as SCE UA (Duan et al., 1992), DEoptim (Mullen et al.,
2011), and the SPSO-2011 (Clerc, 2012). Results indicate that hy-
droPSO is competitive in terms of computational efficiency and ef-
fectiveness to find the global optimum for a series of benchmarking
functions.

5. Finally, investigation on improvements to the canonical PSO algorithm
is one of the most dynamic and active research areas in Particle Swarm
literature. Therefore, we are particularly interested in constantly up-
dating the hydroPSO package according to the most relevant innova-
tions in this research domain. Authors would greatly appreciate any
feedback from the users, which can be provided through the hydroPSO
rforge webpage (http://www.rforge.net/hydroPSO/).
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This tutorial was built under:

[1] "hydroPSO 0.2-2"

[1] "R version 2.15.1 (2012-06-22)"

[1] "i386-pc-mingw32/i386 (32-bit)"
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