
Package ‘RSclient’
January 4, 2025

Version 0.7-11

Title Client for Rserve

Author Simon Urbanek [aut, cre, cph]
(https://urbanek.org, <https://orcid.org/0000-0003-2297-1732>)

Maintainer Simon Urbanek <Simon.Urbanek@r-project.org>

Depends R (>= 2.7.0)

Description Client for Rserve, allowing to connect to Rserve instances and issue commands.

License GPL-2 | file LICENSE

URL https://www.rforge.net/RSclient/

BugReports https://github.com/s-u/RSclient/issues/

NeedsCompilation yes

Contents
RC-methods . 1
RCC . 2
Rclient . 6

Index 9

RC-methods Methods for the RserveConnection class

Description

Basic methods (printing, comparison) for the RserveConnection class.

Usage

S3 method for class 'RserveConnection'
print(x, ...)
S3 method for class 'RserveConnection'
e1 == e2
S3 method for class 'RserveConnection'
e1 != e2

1

https://orcid.org/0000-0003-2297-1732
https://www.rforge.net/RSclient/
https://github.com/s-u/RSclient/issues/

2 RCC

Arguments

x Rserve connection object

e1 Rserve connection object

e2 Rserve connection object

... ignored

Value

print returns x invisibly

== and != return a logical scalar

Author(s)

Simon Urbanek

RCC Functions to talk to an Rserve instance (new version)

Description

Rserve is a server providing R functionality via sockets. The following functions allow another R
session to start new Rserve sessions and evaluate commands.

Usage

RS.connect(host = NULL, port = 6311L, tls = FALSE, verify = TRUE,
proxy.target = NULL, proxy.wait = TRUE, chain, key, ca)

RS.login(rsc, user, password, pubkey, authkey)
RS.eval(rsc, x, wait = TRUE, lazy = TRUE)
RS.eval.qap(rsc, x, wait = TRUE)
RS.collect(rsc, timeout = Inf, detail = FALSE, qap = FALSE)
RS.close(rsc)
RS.assign(rsc, name, value, wait = TRUE)
RS.switch(rsc, protocol = "TLS", verify = TRUE, chain, key, ca)
RS.authkey(rsc, type = "rsa-authkey")
RS.server.eval(rsc, text)
RS.server.source(rsc, filename)
RS.server.shutdown(rsc)
RS.oobCallbacks(rsc, send, msg)

Arguments

host host to connect to or socket path or NULL for local host

port TCP port to connect to or 0 if unix socket is to be used

tls if TRUE then SSL/TLS encrypted connection is started

verify logical, if FALSE no verification of the server certificate is done, otherwise the
certificate is verified and the function will fail with an error if it is not valid.

chain string, optional, path to a file in PEM format that contains client certificate and
its chain. The client certificate must be first in the chain.

RCC 3

key string, optional, path to a file in PEM format containing the private key for the
client certificate. If a client certificate is necessary for the connection, both
chain and key must be set.

ca string, optional, path to a file holding any additional certificate authority (CA)
certificates (including intermediate certificates) in PEM format that are required
for the verification of the server certificate. Only relevant if verify=TRUE. If
not set then it will be attempted to load the default trust store of the underlying
library (which typically includes trusted root certificates).

proxy.target proxy target (string) in the form <host>:<port> to be used when connect-
ing to a non-transparent proxy that requires target designation. Not used when
connected to transparent proxies or directly to Rserve instances. Note that literal
IPv6 addresses must be quoted in [].

proxy.wait if TRUE then the proxy will wait (indefinitely) if the target is unavailable due to
too high load, if FALSE then the proxy is instructed to close the connection in
such instance instead

rsc Rserve connection as obtained from RS.connect

user username for authentication (mandatory)

password password for authentication

pubkey public key for authentication

authkey authkey (as obtained from RS.authkey) for secure authentication

x expression to evaluate

wait if TRUE then the result is delivered synchronously, if FALSE then NULL is re-
turned instead and the result can be collected later with RS.collect

lazy if TRUE then the passed expression is not evaluated locally but passed for remote
evaluation (as if quoted, modulo substitution). Otherwise it is evaluated locally
first and the result is passed for remote evaluation.

timeout numeric, timeout (in seconds) to wait before giving up

detail if TRUE then the result payload is returned in a list with elements value (unse-
rialized result value of the command - where applicable) and rsc (connection
which returned this result) which allows to identify the source of the result and
to distinguish timeout from a NULL value. Otherwise the returned value is just
the payload value of the result.

name string, name of the symbol to assign to

value value to assign – if missing name is assumed to be a symbol and its evaluated
value will be used as value while the symbol name will be used as name

protocol protocol to switch to (string)

type type of the authentication to perform (string)

send callback function for OOB_SEND

msg callback function for OOB_MSG

text string that will be parsed and evaluated on the server side

filename name of the file (on the server!) to source

qap logical, if TRUE then the result is assumed to be in QAP encoding (native Rserve
protocol), otherwise it is assumed to be using R serialization.

4 RCC

Details

RS.connect creates a connection to a Rserve. The returned handle is to be used in all subse-
quent calls to client functions. The session associated witht he connection is alive until closed via
RS.close.

RS.close closes the Rserve connection.

RS.login performs authentication with the Rserve. The user entry is mandatory and at least
one of password, pubkey and authkeymust be provided. Typical secure authentication is per-
formed with RS.login(rsc, "username", "password", authkey=RS.authkey(rsc))
which ensures that the authentication request is encrypted and cannot be spoofed. When using TLS
connections RS.authkey is not necessary as the connection is already encrypted.

RS.eval evaluates the supplied expression remotely.

RS.eval.qap behaves like RS.eval(..., lazy=FALSE), but uses the Rserve QAP serial-
ization of R objects instead of the native R serialization.

RS.collect collects results from RS.eval(..., wait = FALSE) calls. Note that in this
case rsc can be either one connection or a list of connections.

RS.assign assigns a value to the remote global workspace.

RS.switch attempts to switch the protocol currently used for communication with Rserve. Cur-
rently the only supported protocol switch is from plain QAP1 to TLS secured (encrypted) QAP1.

RS.oobCallbacks sets or retrieves the callback functions associated with OOB_SEND and
OOB_MSG out-of-band commands. If neither send nor msg is specified then RS.oobCallbacks
simply returns the current callback functions, otherwise it replaces the existing ones. Both functions
have the form function(code, payload) where code is the OOB sub-code (scalar integer)
and payload is the content passed in the OOB command. For OOB_SEND the result of the call-
back is disarded, for OOB_MSG the result is encoded and sent back to the server. Note that OOB
commands in this client are only processed when waiting for the response to another command
(typically RS.eval). OOB commands must be explicitly enabled in the server in order to be used
(they are disabled by default).

RS.server.eval, RS.server.source and RS.server.shutdown are ‘control com-
mands’ which are enqueued to be processed by the server asynchronously. They return TRUE on
success which means the command was enqueued - it does not mean that the server has processed
the command. All control commands affect only future connections, they do NOT affect any already
established client connection (including the curretn one). RS.server.eval parses and evaluates
the given code in the server instance, RS.server.source sources the given file in the server (the
path is interpreted by the server, it is not the local path of the client!) and RS.server.shutdown
attempts a clean shutdown of the server. Note that control commands are disabled by default and
must be enabled in Rserve either in the configuration file with control enable or on the com-
mand line with --RS-enable-control (the latter only works with Rserve 1.7 and higher). If
Rserve is configured with authentication enabled then only admin users can issues control com-
mands (see Rserve documentation for details).

Parallel use

It is currently possible to use Rserve connections in parallel via mcparallel or mclapply if
certain conditions are met. First, only clear connection (non-TLS) are eligible for parallel use and
there may be no OOB commands. Then it is legal to use connections in forked process as long
as both the request is sent and the result is collected in the same process while no other process
uses the connection. However, connections can only be created in the parent session (except if the
connection is created and subsequently closed in the child process).

One possible use is to initiate connections to a cluster and perform operations in parallel. For
example:

RCC 5

library(RSclient)
library(parallel)
try to connect to 50 different nodes
cannot parallelize this - must be in the parent process
c <- lapply(paste("machine", 1:50, sep=''),

function(name) try(RS.connect(name), silent=TRUE))
keep only successful connections
c <- c[sapply(c, class) == "RserveConnection"]
login to all machines in parallel (using RSA secured login)
unlist(mclapply(c,

function(c) RS.login(c, "user", "password",, RS.authkey(c)),
mc.cores=length(c)))
do parallel work ...
pre-load some "job" function to all nodes
unlist(mclapply(c, function(c) RS.assign(c, job), mc.cores=length(c)))
etc. etc. then call it in parallel on all nodes ...
mclapply(c, function(c) RS.eval(c, job()), mc.cores=length(c))

close all
sapply(c, RS.close)

Note

The current version of the RSclient package supplies two clients - one documented in Rclient
which uses R connections and one documented in RCC which uses C code and is far more versatile
and efficient. This is the documentation for the latter which is new and supports features that
are not supported by R such as unix sockets, SSL/TLS connections, protocol switching, secure
authentication and multi-server collection.

Note

The RSclient package can be compiled with TLS/SSL support based on OpenSSL. Therefore the
following statements may be true if RSclient binaries are shipped together with OpenSSL: This
product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/). This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).
They are not true otherwise.

Author(s)

Simon Urbanek

Examples

Not run:
c <- RS.connect()
RS.eval(c, data(stackloss))
RS.eval(c, library(MASS))
RS.eval(c, rlm(stack.loss ~ ., stackloss)$coeff)
RS.eval(c, getwd())
x <- rnorm(1e5)
this sends the contents of x to the remote side and runs `sum` on
it without actually creating the binding x on the remote side

6 Rclient

RS.eval(c, as.call(list(quote(sum), x)), lazy=FALSE)
RS.close(c)

End(Not run)

Rclient Functions to talk to an Rserve

Description

Rserve is a server providing R functionality via sockets. The following functions allow another R
session to start new Rserve sessions and evaluate commands. The support is very rudimentary and
uses only a fraction of the funtionality provided by Rserve. The typical use of Rserve is to connect
to other applications, not necessarily to connect two R processes. However, it is not uncommon to
have a cluster of Rserve machines so the following functions provide a simple client access.

For more complete cilent implementation see src/clients directory of the Rserve distribution
which show a C/C++ client. Also available from the Rserve pages is a Java client (JRclient).
See http://rosuda.org/Rserve for details.

Usage

RSconnect(host = "localhost", port = 6311)
RSlogin(c, user, pwd, silent = FALSE)
RSeval(c, expr)
RSclose(c)
RSshutdown(c, pwd = NULL, ctrl = FALSE)
RSdetach(c)
RSevalDetach(c, cmd = "")
RSattach(session)
RSassign(c, obj, name = deparse(substitute(obj)))
RSserverEval(c, expr)
RSserverSource(c, file)

Arguments

host host to connect to

port TCP port to connect to

c Rserve connection

user username for authentication

pwd password for authentication

cmd command (as string) to evaluate

silent flag indicating whether a failure should raise an error or not

session session object as returned by RSdetach or RSevalDetach

obj value to assign

name name to assign to on the remote side

expr R expression to evaluate remotely

file path to a file on the server(!) that will be sourced into the main instance

ctrl logical, if TRUE then control command (CMD_ctrlShutdown) is used for
shutdown, otherwise the legacy CMD_shutdown is used instead.

Rclient 7

Details

RSconnect creates a connection to a Rserve. The returned handle is to be used in all subse-
quent calls to client functions. The session associated witht he connection is alive until closed via
RSclose.

RSlogin performs authentication with the Rserve. Currently this simple client supports only plain
text authentication, encryption is not supported.

RSclose closes the Rserve connection.

RSeval evaluates the supplied expression remotely. expr can be either a string or any R ex-
pression. Use quote to use unevaluated expressions. The implementation of RSeval is very
efficient in that it does not require any buffer on the remote side and uses native R serialization as
the protocol. See exmples below for correct use.

RSdetach detaches from the current Rserve connection. The connection is closed but can be
restored by using RSattach with the value returned by RSdetach. Technically the R on the
other end is still running and waiting to be atached.

RSshutdown terminates the server gracefully. It should be immediately followed by RSclose
since the server closes the connection. It can be issued only on a valid (authenticated) connection.
The password parameter is currently ignored since password-protected shutdown is not yet sup-
ported. Please note that you should not terminate servers that you did not start. More recent Rserve
installation can disable regular shutdown and only allow control shutdown (avaiable to control users
only) which is invoked by specifying ctrl=TRUE.

RSevalDetach same as RSdetach but allows asynchronous evaluation of the command. The
remote Rserve is instructed to evaluate the command after the connection is detached. Please note
that the session cannot be attached until the evaluation finished. Therefore it is advisable to use
another session when attaching to verify the status of the detached session where necessary.

RSattach resume connection to an existing session in Rserve. The session argument must
have been previously returned from the RSdetach or RSevalDetach comment.

RSassign pushes an object to Rserve and assigns it to the given name. Note that the name can
be an (unevaluated) R expression itself thus allowing constructs such as RSassign(c, 1:5,
quote(a$foo)) which will result in a$foo <- 1:5 remotely. However, character names are
interpreted literarly.

RSserverEval and RSserverSource enqueue commands in the server instance of Rserve,
i.e. their effect will be visible for all subsequent client connections. The Rserve instance must have
control commands enabled (not the default) in order to allow those commands. RSserverEval
evaluates the supplied expression and RSserverSource sources the specified file - it must be
a valid path to a file on the server, not the client machine! Both commands are executed asyn-
chronously in the server, so the success of those commands only means that they were queued on
the server - they will be executed between subsequent client connections. Note that only subsequent
connections will be affected, not the one issuing those commands.

Author(s)

Simon Urbanek

Examples

Not run:
c <- RSconnect()
data(stackloss)
RSassign(c, stackloss)
RSeval(c, quote(library(MASS)))

8 Rclient

RSeval(c, quote(rlm(stack.loss ~ ., stackloss)$coeff))
RSeval(c, "getwd()")

image <- RSeval(c, quote(try({
attach(stackloss)
library(Cairo)
Cairo(file="plot.png")
plot(Air.Flow,stack.loss,col=2,pch=19,cex=2)
dev.off()
readBin("plot.png", "raw", 999999)})))

if (inherits(image, "try-error"))
stop(image)

End(Not run)

Index

!=.RserveConnection (RC-methods),
1

∗ interface
RC-methods, 1
RCC, 2
Rclient, 6

==.RserveConnection (RC-methods),
1

print.RserveConnection
(RC-methods), 1

quote, 7

RC-methods, 1
RCC, 2, 5
Rclient, 5, 6
RS.assign (RCC), 2
RS.authkey (RCC), 2
RS.close (RCC), 2
RS.collect (RCC), 2
RS.connect (RCC), 2
RS.eval (RCC), 2
RS.login (RCC), 2
RS.oobCallbacks (RCC), 2
RS.server.eval (RCC), 2
RS.server.shutdown (RCC), 2
RS.server.source (RCC), 2
RS.switch (RCC), 2
RSassign (Rclient), 6
RSattach (Rclient), 6
RSclose (Rclient), 6
RSconnect (Rclient), 6
RSdetach (Rclient), 6
RSeval (Rclient), 6
RSevalDetach (Rclient), 6
RSlogin (Rclient), 6
RSserverEval (Rclient), 6
RSserverSource (Rclient), 6
RSshutdown (Rclient), 6

9

	RC-methods
	RCC
	Rclient
	Index

